
Effort estimates for vulnerability discovery projects

Teodor Sommestad

The Royal Institute of

Technology (KTH), Sweden

 teodors@ics.kth.se

Hannes Holm

The Royal Institute of

Technology (KTH), Sweden

 hannesh@ics.kth.se

Mathias Ekstedt

The Royal Institute of

Technology (KTH), Sweden

 mathiase@ics.kth.se

Abstract
Security vulnerabilities continue to be an issue in

the software field and new severe vulnerabilities are

discovered in software products each month. This

paper analyzes estimates from domain experts on the

amount of effort required for a penetration tester to

find a zero-day vulnerability in a software product.

Estimates are developed using Cooke's classical

method for 16 types of vulnerability discovery

projects – each corresponding to a configuration of

four security measures. The estimates indicate that,

regardless of project type, two weeks of testing are

enough to discover a software vulnerability of high

severity with fifty percent chance. In some project

types an eight-to-five-week is enough to find a zero-

day vulnerability with 95 percent probability. While

all studied measures increase the effort required for

the penetration tester none of them have a striking

impact on the effort required to find a vulnerability.

1. Introduction

A substantial share of the security problems

encountered in enterprises today arises because

software products have security vulnerabilities. New

vulnerabilities are discovered on a continuous basis.

During 2010 alone, a total of 2096 new software

vulnerabilities of high severity were publicly

announced [1]. Many factors influence the number of

vulnerabilities that are found in a software product.

The effort invested into searching for vulnerabilities

in a software product is one important variable [2,3].

Another important variable is the difficulty

associated with finding vulnerabilities in the software

product, i.e. how much effort that is required to find a

vulnerability in it.

Secure software development practice (see [4] for

an overview) suggests a wide range of measures to

increase the security of a software product’s source

code and thus increase the effort required to find a

vulnerability, e.g. testing during the development

phase. A natural question to ask is how much effort

that is required to find a vulnerability in a software

product given that different security enhancing

measures have been used. Unfortunately, there are no

studies available which answer this question, or even

provide rough estimates of it. Ideally, this would be

tested in experiments or derived from representative

archival data on projects that attempted to discover

vulnerabilities. However, constructing experiments of

this kind are associated with substantial cost, and

reliable archival data on efforts made not available to

the community [5].

Expert judgment is often used when quantitative

data is difficult to obtain from experiments or studies

of archival data. This paper presents expert estimates

on vulnerability discovery effort that are constructed

using Cooke’s classical method. This method assigns

weights to experts based on how correct and certain

they are on a set of questions related to the issue

investigated, and for which the true answer is known

at the time of analysis. It has been used to assess

uncertain quantities in a wide range of domains and

in general outperforms other methods that synthesize

or aggregate domain experts’ judgment [6].

The effort estimates presented in this paper

quantify the effort associated with finding a zero-day

vulnerability in a software product. That is, finding a

vulnerability in deployed software product which is

not already publicly announced or patched [7]. The

experts in this study are researchers in the software

vulnerability field. They used their domain

knowledge to assess the work effort it takes for a

professional penetration tester taking on 16

hypothetical vulnerability discovery projects, all with

the goal to find a zero-day vulnerability of high

severity. The resulting estimates show the probability

that a vulnerability is found as a function of the work

days spent on the project.

The paper is structured as follows. Section 2

presents the variables used in the effort estimation

model. In section 3 Cooke’s classical method is

mailto:teodors@ics.kth.se
mailto:hannesh@ics.kth.se
mailto:emailaddress@xxx.xxx

explained. Section 4 presents the method and section

5 presents the results. In section 6 these results are

discussed and in section 7 conclusions are drawn.

2. Model and assumptions

This paper estimates the effort that is required to

discover a zero-day vulnerability in a software

product given that different security measures are

used. Both the software security field and effort

estimation field are well explored. However, no

previous work has been found on the work-effort

required to find zero-day vulnerabilities. This section

presents the variables assessed in this study and the

assumptions it is based upon.

2.1. Variables impacting discovery effort

A countless number of variables can be assumed

to influence the effort required to find vulnerabilities

in it. Technical measures, process measures and

organizational measures are all of relevance [4].

Naturally, the scope of this research does not

include all variables that could have an impact on the

effort required to find a zero-day vulnerability. To

identify a manageable set of variables to include a

panel consisting of three security experts were

consulted. All experts in this panel had practical

experience of penetration testing and worked with

security testing on a regular basis. They prioritized a

list of candidate variables drawn from literature such

as [4,8-11]. They were also given the option to

suggest variables not included in the list presented to

them. Table 1 shows the variables that came out of

this process and are included in this study. All these

variables were expected to have an impact on the

effort required to find a new vulnerability in a

software product.

Table 1. Variables studied.

Variable Description

Scrutinized The targeted software has been

scrutinized before.

SourceCode The professional penetration tester has

access to the source code.

SafeLanguage The software is written in a safe

language (e.g. C#, Java) or a safe dialect

(e.g. Cyclone).

CodeAnalyzers The software has been analyzed by

static code analyzers and improved

based on the result.

All variables described in Table 1 have support in

literature. Software which has been scrutinized and

tested in practice will be more difficult to find

vulnerabilities in. This type of effect is often assumed

in software reliability models [5] and data on

vulnerabilities found in software products imply that

a saturation level for vulnerabilities discovered in a

product is reached after a certain time on the market

[12]. Access to the source code, i.e. the uncompiled

code, is also considered a relevant factor [13]. Access

to the uncompiled source code will enable white box

testing and is likely to decrease the effort required to

find a vulnerability. If the programming language

used to create the software product is a safe language

[14] many potential programming flaws leading to

vulnerabilities can be avoided. Finally, the use of

code analyzers is often a recommended practice in

software development to identify vulnerabilities in

the code [15-17] .

2.2. Assumptions

A number of assumptions are used for the effort

estimates produced in this study and are kept constant

in this study. First, the competence of the actual

performer of the vulnerability discovery project can

be expected to have a substantial impact on the effort

required [5]. To eliminate variations caused by this

variable it is assumed that the person who carries out

the vulnerability discovery project is a professional

penetration tester. Secondly, it would be extremely

difficult to find vulnerabilities in a product which is

completely inaccessible to the person carrying out the

project. Therefore, it is assumed that the person

searching for vulnerabilities has access to the

compiled code (the binary) even if the source code

(SourceCode) is unavailable to him/her. Third, a

work day was set to eight hours of work. This was

specified to avoid confusion about what quantity that

should be estimated (calendar, budget or effort) [18].

Fourth, the vulnerability that should be discovered

needs to qualify as a high severity-vulnerability

according to the Common Vulnerability Scoring

System [19]. Since such vulnerabilities are more

severe than other vulnerabilities it is more interesting

to obtain knowledge about them. The final

assumption used, and presented to those who

estimated effort, was that all unspecified variables

(e.g. the size of the source code) assume the state

they typically have in an enterprise environment.

Thus, any uncertainty remaining after the variables

and assumptions are specified should be accounted

for in the estimates. That is, variation between

software not covered by the assumptions or variables

will introduce uncertainty and variation to the effort

required. The respondents were asked to consider this

uncertainty onto the estimates the made.

3. Synthesizing expert judgments

There is much research on how to combine, or

synthesize, the judgment of multiple experts to

increase the calibration of the estimate used.

Research has shown that a group of individuals

assess an uncertain quantity better than the average

expert, but the best individuals in the group are often

better calibrated than the group as a whole [20]. The

combination scheme used in this research is the

classical model of Cooke [21]. Experience shows that

Cooke’s classical method outperforms both the best

expert and the “equal weight” combination of

estimates. In an evaluation involving 45 studies it

performs significantly better than both in 27 studies

and performs equally as well as the best expert in 15

of them [6].

In Cooke’s classical method calibration and

information scores are calculated for the experts

based on their answers on a set of seed questions, i.e.

questions for which the true answer is known at the

time of analysis. The calibration score shows how

well the respondent’s answers represent the true

value; the information score show how precise the

respondent’s answers are. These two scores are used

to define a decision maker which assigns weights to

the experts based on their performance. The weights

defined by this decision maker are used to weight the

respondents answer’s to the questions of interest – in

this case the effort estimates for vulnerability

discovery projects. In sections 3.1, 3.2 and in 3.3

Cooke’s classical method is explained. For a more

detailed explanation the reader is referred to [21].

3.1. Calibration score

In the elicitation phase the experts provide

individual answers to the seed questions. The seed

questions request the respondents to specify a

probability distribution for an uncertain continuous

variable. This distribution is typically specified by

stating its 5
th

, 50
th

, and 95
th

 percentile values. These

percentiles yield four intervals over the percentiles

[0-5, 5-50, 50-95, 95-100] with probabilities of p=

[0.05, 0.45, 0.45, 0.05]. As the seeds are realizations

of these uncertain variables the well calibrated expert

will have approximately 5% of the realizations in the

first interval, 45 % of the realizations in the second

interval, 45 % of the realizations in the third interval

and 5% of the realizations in the fourth interval. If s

is the distribution of the seeds over the intervals the

relative information of s with respect to p is:

.

This value indicates how surprised someone

would be if one believed that the distribution was p

and then learnt that it was s.

If N is the number of samples (seeds) the statistic

of 2NI(s, p) is asymptotically Chi-square distribution

with three degrees of freedom. This is asymptotic

behavior is used to calculate the calibration Cal of

expert e as: . Calibration

measures the statistical likelihood of a hypothesis.

The hypothesis tested is that realizations of the seeds

(s) are sampled independently from a distribution

agreeing with the expert's assessments (p).

3.2. Information score

The second score used to weight experts is the

information score, i.e. how informative the expert’s

distributions are. This score is calculated as the

deviation of the expert's distribution to some

meaningful background measure. In this study the

background measure is a uniform distribution over

[0,1].

If bi is the background density for seed i∈{1,…,N}

and de,i is the density of expert e on seed i the

information score for expert e is calculated as:

, i.e. as the relative information

of the experts distribution with respect to the

background measure. It should be noted that the

information score does not reflect calibration and

does not depend on the realization of the seed

questions. So, regardless of what the correct answer

is to a seed question a respondent will receive a low

information score for an answer which is similar to

the background measure, i.e. the answer is distributed

evenly over the variable’s range. Conversely, an

answer which is more certain and has focused the

probability density over few possible outcomes will

yield high information scores.

3.3. Constructing a decision maker

The classical method rewards experts who

produce answers with high calibration (high

statistical likelihood) and high information value

(low entropy). A strictly proper scoring rule is used

to calculate the weights the decision maker should

use. If the calibration score of the expert e is equal or

greater than a threshold value the expert’s weight is

obtained as w(e)=Cal(e)*Inf(e). If the expert’s

calibration is less than α the expert’s weight is set to

zero, a situation which is common to happen a

substantial number of experts in practical

applications.

The threshold value α corresponds to the

significance level for rejection of the hypothesis that

the expert is well calibrated. The value of α is

identified by resolving the value that would optimize

a virtual decision maker. This virtual decision maker

combines the experts’ answers (probability

distributions) based on the weights they obtain at the

chosen threshold value (α). The optimal level for α is

where this virtual expert would receive the highest

possible weight if it was added to the expert pool and

had its calibration and information scored as the

actual experts.

When α has been resolved the normalized value

of the experts weights w(e) are used to combine their

estimates of the uncertain quantities of interest.

4. Data collection method

This section presents how the data was collected

in terms of: how seed questions for Cooke’s classical

method were constructed, the population and sample

of experts that was chosen and how the elicitation

instrument was developed and tested.

4.1. Seed questions

As the experts performance on answering the seed

questions are used to weight them, it is critical that

the seeds are well validated and also that they lie in

the same domain as the studied variables. They need

to be drawn from the respondents’ domain of

expertise, but need not necessarily be directly related

to questions of the study [21].

Naturally, the robustness of the weights attributed

to individual experts depends on the number of seeds

used. This study used 11 seed questions. Experience

shows this is more than enough to see substantial

difference in calibration [21] between experts.

For this study two types of seed questions were

used (cf. Table 2). All of these were constructed

using information from the national vulnerability

database and concerned characteristics of existing

vulnerabilities in software products. Questions 1-5

concerned different types of vulnerabilities and under

what conditions they could be exploited; questions 6-

11 concerned how often publicly known

vulnerabilities in different products was due to input

validation or buffer errors and to authentication or

authorization errors (cf. Table 3). Both these two

types of questions are related to the topic as they

gauge how well the expert can assess properties

related to vulnerabilities that can be expected to be

found.

Table 2. Seed questions used in abbreviated
format and their realized value.

Question Real

1 What portion of vulnerabilities published

during 2010 of high severity has a complete

impact on CIA

57 %

2 What portion of vulnerabilities published

during 2010 of medium severity has a

complete impact on CIA.

6 %

3 What portion of vulnerabilities published

during 2010 that are remotely exploitable

(does not require LAN access) will require

that the attacker can authenticate itself before

succeeding with an exploit?

9 %

4 What portion of vulnerabilities published in

2010 that are remotely exploitable (does not

require LAN access) and requires that the

attacker can authenticate itself before the

exploit is of high severity?

15 %

5 What portion of vulnerabilities published in

2010 that are remotely exploitable (does not

require LAN access) is of high severity?

52 %

6 What portion of vulnerabilities publicly

announced in 2010 with high severity is due

to input validation or buffer errors?

53 %

7 What portion of vulnerabilities publicly

announced with high severity for Windows 7

is due to input validation or buffer errors?

36 %

8 What portion of vulnerabilities publicly

announced with high severity for Apple’s

products is due to input validation or buffer

errors?

31 %

9 What portion of vulnerabilities publicly

announced with high severity for the .NET

framework is due to authentication or

authorization errors?

10 %

1

0

What portion of vulnerabilities publicly

announced with high severity for the

Microsoft’s Internet Information Services is

due to authentication or authorization errors?

13 %

1

1

What portion of vulnerabilities publicly

announced with high severity for Cisco’s

products is due to authentication or

authorization errors?

11 %

Table 3. Error types from NVD used.

Input validation/buffer

errors

Authentication or

authorization errors

CWE 20: Improper Input

Validation

CWE 89: SQL Injection

CWE 119: Failure to

Constrain Operations within

the Bounds of a Memory

Buffer

CWE 134: Uncontrolled

Format String

CWE 189: Numeric Errors

CWE 255: Credentials

Management

CWE 264: Permissions,

Privileges, and Access

Controls

CWE 287: Improper

Authentication

CWE 310: Cryptographic

Issues

4.2 The domain experts

As this research aims to identify quantities related

to discovery effort the respondents needed both the

ability to evaluate aspects in the domain and the

ability to reason in terms of probabilities. In terms of

the expert categories described in [22] individuals

that are expert judges are desirable.

Good candidates for this are researchers in the

software security field. These can be expected to both

understand how to reason with probabilities and to

possess the required skills to evaluate the

effectiveness difficulty of finding vulnerabilities in

software. Software security researchers were

therefore chosen as the population to survey. To

identify suitable respondents, articles published in the

SCOPUS database [23], INSPEC or Compendex [24]

between January 2005 and September 2010 were

reviewed. Authors was considered if they had written

articles in the information technology field with any

of the following phrases in the title, abstract or

keywords: “software vulnerability”, “software

vulnerabilities”, “software exploit”, ”software

exploits”, “exploit development”, “develop

exploits”,, “develop an exploit” ,”exploit writing”,

“writing exploits”, “vulnerability research”, or

“exploit code”. If their contact information could be

found they were added to the sample of respondents.

After reviewing and screening respondents and their

contact information a sample of 384 individuals was

assessed. The contact information for approximately

80 turned out to be incorrect or outdated.

As recommended by [25] , motivators were

presented to the respondents invited to the survey: i)

helping the research community as whole, ii) the

possibility to win a gift certificate on literature, and

iii) being able to compare their answers to other

experts after the survey was completed. Out of

approximately 300 researchers invited to the survey

92 opened the survey and 17 submitted answers to

the survey’s questions. A response rate of this

magnitude is logically to be expected of a more

advanced survey of this type.

4.3. Elicitation instrument

A web survey was used to collect the probability

distributions from the invited respondents. The

survey was structured into four parts, each beginning

with a short introduction to the section. First, the

respondents were given an introduction to the survey

as such that explained the purpose of the survey and

its outline. In this introduction they also confirmed

that they were the person who had been invited and

provided information about themselves, e.g. years of

experience in the field of research. Second, the

respondents received training regarding the

answering format used in the survey. After

confirming that this format was understood the

respondents proceeded to its third part. In the third

part both the seed questions and the questions of the

study were presented to the respondents. Finally, the

respondents were asked to provide qualitative

feedback on the survey and the variables covered by

it.

Questions in section 3 were each described

through a scenario entailing a number of conditions.

Scenarios and conditions for the seed questions can

be found in Table 2; project types and conditions for

the questions of interest in this study is described in

section 2.1.

In the seed questions the respondent was asked to

provide a probability distribution that expressed the

respondent’s belief. As is custom in applications of

Cooke’s classical method this probability distribution

was specified by setting the 5
th

 percentile, the 50
th

percentile (the median), and the 95
th

 percentile for the

probability distribution. In the survey the respondents

specified their distribution by adjusting sliders or

entering values to draw a dynamically updated graph

over their probability distribution. The three points

specified by the respondents defines four intervals

over the range [0, 100]. The graphs displayed the

probability density as a histogram, instantly updated

upon change of the input values.

In the question of interest, the respondent

specified probability distributions for work days

required to find a zero-day vulnerability. The

respondents were asked to specify the number of

work days that would be needed to find a zero-day

vulnerability with a probability of 5 percent, 50

percent and 95 percent. This is a common format to

use for effort estimates [26] and in prediction in

general [27]. As before the estimates dynamically

updated a graph representing the answer. However,

for these questions this graph showed the cumulative

probability of finding a zero-day vulnerability as a

function of work days spent. This graph was plotted

using linear interpolation between the three values

specified by the respondent.

Use of graphical formats is known to improve the

accuracy of elicitation [28]. Figures and colors were

also used to complement the textual formulations and

make the content easier to understand. In Figure 1 the

format presented to respondents is exemplified.

Figure 1. Examples of question and
answering format in the survey (seed 4 and

project type 2).

Elicitation of probability distributions is

associated with a number of issues [28]. Effort was

therefore spent on ensuring that the measurement

instrument held sufficient quality. After careful

construction the survey was qualitatively reviewed

during personal sessions with an external respondent

representative of the population. This session

contained two parts. First the respondent was given

the task to fill in the survey, given the same amount

of information as someone doing it remotely. After

this discussions followed regarding the instrument

quality. These sessions resulted in several

improvements.

Before this qualitative review the question format

as such had been tested in a pilot study on other

security parameters. In that pilot study a randomized

sample of 500 respondents was invited; 34 of these

completed the pilot during the week it was open. The

questions in this pilot survey were presented in the

same way as in the present survey. A reliability test

using Cronbach’s alpha [29,30] was carried out using

four different ways to phrase questions for one

variable. Results from this test showed α = 0.817,

which indicates good internal consistency of the

instrument.

5. Results

This section presents the result of the analysis

performed on the judgment of the 17 researchers. In

section 5.1 the overall performance of the

respondents on the seed questions is presented. In

section 5.2 the synthesized estimates of those

respondents who were assigned weight are presented.

In section 5.3 the influence that each of the four

individual variable have on the effectiveness is

described.

5.1. Respondents’ performance

As in many other studies involving expert

judgment some of the respondents were poorly

calibrated. Their calibration score varied between

0.540×10
-3

 and 0.615 with a mean of 0.305. The

respondents’ information score varied between

0.0770 and 1.009 with a mean of 0.324. Figure 2

shows the information score and calibration score of

the 17 respondents.

Figure 2. Information and calibration scores
of the respondents.

Cooke’s classical method aims is to identify those

respondents whose judgment is well calibrated and

informative. The virtual decision maker was

optimized at a significance level (α) of 0.615.

Consequently, the three rightmost respondents in

Figure 2 received a weight higher than zero and the

other 14 respondents received a weight of zero. As

noted in 0 above it is not uncommon that a

substantial number of respondents receive the weight

zero with this method.

The twelve respondents who received a positive

weight all had the same calibration score (0.615).

Their weights are therefore directly proportional with

their information score (cf. section 3.2). They

received weights 0.1086, 0.3711 and 0.5203 after

normalization.

5.2. Work effort in the project types

To identify the probability distribution which the

virtual decision maker assigns to the 16 types of

vulnerability discovery projects examined the

respondents’ individual estimates were combined

based on the respondent’s weights. The estimated

distributions were assumed to be distributed in the

same way as they were presented to the respondents

(c.f. section 4.3), i.e. as depicted in the linearly

interpolated cumulative probability distributions for

the finding of a zero-day vulnerability when work

effort is increased.

Table 1. Different types of vulnerability
discovery projects and the estimated effort

to find a vulnerability with a certain degree of
certainty. Values have been rounded off to

closest number of full days.

P
ro

je
ct

S
cr

u
ti

n
iz

ed

S
o

u
rc

eC
o

d
e

S
a

fe
L

a
n

g
u

a
g

e

C
o

d
eA

n
a

ly
ze

rs

L
o

w
 (

5
%

)

M
ed

ia
n

(5
0

%
)

H
ig

h
9
5

%
)

1 Yes Yes Yes Yes 3 13 74

2 Yes Yes Yes No 1 3 26

3 Yes Yes No Yes 0 13 26

4 Yes Yes No No 0 1 7

5 Yes No Yes Yes 1 12 855

6 Yes No Yes No 0 10 27

7 Yes No No Yes 2 9 855

8 Yes No No No 1 4 257

9 No Yes Yes Yes 1 6 27

10 No Yes Yes No 0 4 9

11 No Yes No Yes 0 3 17

12 No Yes No No 1 3 8

13 No No Yes Yes 1 14 344

14 No No Yes No 1 7 27

15 No No No Yes 1 6 18

16 No No No No 0 3 9

The respondents specified the cumulative

probability distribution through its 5
th

, 50
th

 and 95
th

percentile. As depicted in Table 4 and the synthesized

estimates show clear differences among the project

types. The median for the projects varies between 1

and 14 work days; the value at the 5
th

 percentile

varies between 0 and 3 work days; the value at the

95
th

 percentile varies between 7 and 855 work days.

As could be expected is project type 5 the one with

highest expected effort, closely followed by project

type 7. For these two project types a time budget of

more than 2 years and 4 months is needed to find a

vulnerability with 95 percent certainty. In other

project types this certainty can be obtained with a

time-budget of just a week or a month. Project type 4,

10, 12 and 16 are associated with lowest work effort.

5.3 Variables influence on the effectiveness

Four variables are varied to specify the 16 project

types. The variation over scenarios supports this

hypothesis that they influence effort. A relevant

question is then how important these variables are for

the effort required by the attacker. Table 5 shows the

mean influence that the four variables have on the

probability distribution. These values are the mean

difference obtained when comparing scenarios where

the variable is in the state true with those scenarios

where the variable is in the state false, and all other

variables remain in the same state. For instance, the

values for Scrutinized are obtained as the mean value

of the difference between scenarios 1 and 9, 2 and 10,

3 and 11 and so on.

All variables have a positive impact on the effort

required to find a zero day vulnerability given a

number of work days. As can be seen from Table 5

the most influential variables on the 95
th

 percentile

are Scrutinized (if the software has been searched for

vulnerabilities before), SourceCode (if the attacker

can get access to the source code) and CodeAnalyzers

(if the software product has been improved with

static code analyzers). The impact of these variables

on the high extreme value, where a zero-day

vulnerability is found with 95 percent probability, is

substantial. Such sizeable difference cannot be found

for the variable SafeLanguage. As a consequence this

variable has a meager influence on the expected work

effort in comparison to the other variables.

Table 5. Mean influence in work days of the
variables under the assumptions used in the

study.

Variable Low

(5%)

Median

(50%)

High

(95%)

Scrutinized +0.4 +1.1 +208.5

SourceCode +0.1 +3.6 +274.8

SafeLanguage +0.4 +4.6 +24.0

CodeAnalyzers +0.6 +3.9 +230.8

6. Discussion

Software insecurity is a serious problem in

today’s society. Decision makers can certainly make

use of data on the effectiveness of measures that

make vulnerability discovery projects more

cumbersome. Most decision makers probably would

prefer reliable empirical data to base their decisions

on. However, such data is not available today. It is

difficult to obtain such data from archival studies as

no such archives are available and as indicated from

the result of this study it would also be costly to

collect this data from repeated experiments.

The use of expert judgment can be motivated in

absence of reliable data. This study extracts and

synthesizes data from domain experts. The method

used to analyze the experts’ judgments and combine

these is described in section 6.1 below. The

elicitation instrument used is discussed in section 6.2.

The result as such and the importance variables

included in the study are discussed in section 6.3.

6.1. Expert judgment analysis

In this study Cooke’s classical method [21] was

used to synthesize expert judgments. This

performance based method aims to select the experts

that are well calibrated and combine their judgments

in an optimal way. The track record of this method

[6] positions it as the best-practice when it comes to

combining experts’ judgment of uncertain quantities.

Eleven seed questions were used to evaluate

calibration and information scores. These seed

questions are drawn from a vulnerability database. A

concern to the validity is that this source also is

available to the respondents who could have used

them to identify the answers to the seed questions. If

they would do so these seeds would not work well as

a gauge for how well calibrated and informative the

expert’s own judgment is. However, it appears

unlikely that anyone did so. None of the respondents

answering the survey has given comments that

indicate that they have realized that the correct

answer can be found in online databases. Neither did

the qualitative reviewer realize this during the

qualitative reviews. Furthermore, inspections of the

answers received do not indicate any answers were

based on these sources.

The use of these seed questions shows that

calibration varies among experts. This can be seen

through the calibration scores to the seed questions

used in this study (c.f. Figure 2). The three best

calibrated experts were assigned weight when the

virtual decision maker was optimized. The

synthesized probability distributions created based on

their judgment involve a great deal of uncertainty. In

some cases the 95 percent confidence interval spans

over 886 work days. As can be seen from Figure 2 ,

the estimates provided by the three respondents who

obtained weight are not the most informative ones.

This should not be seen as surprising.

Overconfidence is a well-known cause for poor

calibration in expert judgments [31]. Cooke’s

methods only assign weights to experts with a

calibration score that exceeds a threshold value.

However, these experts’ weight is calculated with the

information score as one of two factors. This avoids

domination of uninformative experts in the synthesis

of judgments.

When using this method it is appropriate to

perform robustness test with respect to the seed

variables and the experts by removing one expert and

investigating the impact of this removal [21]. Such

tests were performed and indicate that the solution is

robust to changes in both seed questions and experts.

6.2. Validity and reliability of the elicitation

instrument

Cooke [21] suggests that seven guidelines should

be followed when data is elicited from experts. How

these have been addressed in the present study is

described below.

Cooke states that questions must be clear and

unambiguous and that a dry run should be carried out

before the actual study. In this study the clarity of

questions were tested in qualitative reviews with a

strategically selected respondent representative of the

population. The comments received from this person

helped improve the understandability of the

instrument and remove ambiguity. Also, a

quantitative test was performed on a survey with a

similar structure and a similar way of phrasing

questions. This quantitative test was made through a

pilot survey answered by 34 respondents. It indicated

good reliability of the survey instrument.

It is also suggested that an attractive graphical

format and a brief explanation of the elicitation

format should be prepared [21]. The answering

format used in this study was supported by graphical

illustrations – the answers were entered by entering a

probability function on the screen. This format was

also carefully explained in an introductory training

section in the survey. Also, background information

introduced each new section.

Cooke further recommends that the elicitation

should not exceed one hour and that coaching should

be avoided. None of the respondents who completed

the survey spent more than one hour to do so and

efforts were made to ensure that the questions were

formulated in a neutral way.

The last recommendation given in [21] is that an

analyst should be present when respondents answer

the questions. The respondents were given contact

information to the research group when invited to the

survey and they were encouraged to use these any if

questions arose. It is possible that analysts’ physical

absence from the elicitation suppressed some

potential questions from being asked. In the survey

the respondents were asked to comment the clarity of

the questions and the question format used. Based on

the comment received it appears as if the questions

and the assumptions were understandable. Two

respondents did however comment that the questions

perhaps should be directed towards practitioners

(“hackers”) rather than researchers. While

practitioners probably need more guidance in

specifying answers through probability distributions

this recommendation gives input to future research

efforts in this track

6.3. Variables importance to zero-day

discovery projects

Two weeks of work is enough to have a fifty-fifty

chance of finding a zero-day vulnerability in all

projects types assessed. In some cases two weeks of

work is enough to give more than 95 percent chance

of discovering a zero-day vulnerability and the fifty

percent chance is reached after just a couple of days.

While these estimates give dismaying results they are

not in conflict with already known data. The rate with

which vulnerabilities are publically announced hints

that effort required to find them is modest. We also

tested this prediction model using the PERT formula

[32] on a number of software products which have

been scrutinized. The estimates appear reasonable

when compared to the publicly disclosed

vulnerabilities in SecurityFocus [33] during 2010.

For example, the estimates says that during all days

of 2010 there would be the equivalent of

approximately 7 professional 8 hour work-day on

finding and disclosing vulnerabilities in Firefox, and

that 17 professional penetration testers working each

work-day on Internet Explorer 8.

No radical impact can be made using the

measures included in this study, but they all help to

increase the security of software products. Their

impact on the median value is similar for all

measures except making sure that products have been

scrutinized (this has less impact on the median). The

use of safe languages does not impact the extreme

value (95
th

 percentile) as much as the other ones. As a

consequence, it does not influence the expected effort

as much as the other three countermeasures do, and

could be seen as less effective.

In the survey the respondents were asked to

indicate if there were important variables missing.

Only three out of 17 respondents suggested other

priorities than used in the survey. All three suggested

different things: fuzzers combined with static code

analysis as one variable, if static code analysis was

performed on a regular basis (not just performed),

and variables indicating the security expertise of the

developer and or development process (not specified

which). All these suggestion were considered in the

discussion with the panel of experts who prioritized

variables to include in the survey, but were

intentionally excluded from the survey. This, together

with the survey-respondents’ opinions indicates that

the most important variables for estimating

vulnerability discovery are included in this study.

While the most important variables seems to be

included in our model the estimates indicate that the

effort required to discover a new vulnerability can be

as high as man-years even if the compiled code is

available to the attacker. This study does not reveal

which these conditions are, i.e. when the penetration

tester will have to spend years searching for a

vulnerability. The expert panel and the respondents

of the survey indicated that the most important

variables are included in the model used here. It is

therefore likely that a number of favorable conditions

must apply in these cases. In order to obtain better

and more detailed knowledge in this area further

work could explore what set of measures that causes

this effect and how to achieve such secure software

products.

7. Conclusion

It appears difficult to achieve a high level of

security assurance in today’s software intensive

environment. The probability that a professional

penetration tester will find a previously unknown

vulnerability in software product used today is

disturbingly high. Under most conditions a few days

appears enough to find a zero-day vulnerability with

a fifty percent chance. Countermeasures do increase

work effort required, but none of them seem to have a

striking impact on the effort required to find a

vulnerability, at least not in the general case. The

estimates made by experts included in this study are

associated with a great deal of uncertainty. Under

some conditions the professional penetration tester

will need man years of effort required to find a zero-

day vulnerability, i.e. the 95
th

 percentile spans man-

years. This study does not reveal which these

conditions are, but since no crucial variables seem to

be omitted from this study it is likely that a number

of favorable conditions must apply in these cases.

8. References

[1] U.S.D. of C. NIST Computer Security Resource Center,

“National Vulnerability Database,” 2011.

[2] O.H. Alhazmi and Y.K. Malaiya, “Quantitative

vulnerability assessment of systems software,” Proceedings

of Annual Reliability and Maintainability Symposium, Ieee,

2005, pp. 615-620.

[3] S.-W. Woo, H. Joh, O.H. Alhazmi, and Y.K. Malaiya,

“Modeling vulnerability discovery process in Apache and

IIS HTTP servers,” Computers & Security, vol. 30, Jan.

2011, pp. 50-62.

[4] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and

W. Joosen, “On the secure software development process:

CLASP, SDL and Touchpoints compared,” Information

and Software Technology, vol. 51, Jul. 2009, pp. 1152-

1171.

[5] A. Ozment, “Improving vulnerability discovery

models,” Proceedings of the 2007 ACM workshop on

Quality of protection, ACM, 2007, p. 6–11.

[6] R. Cooke, “TU Delft expert judgment data base,”

Reliability Engineering & System Safety, vol. 93, May.

2008, pp. 657-674.

[7] M.A. McQueen, T.A. McQueen, W.F. Boyer, and M.R.

Chaffin, “Empirical estimates and observations of 0day

vulnerabilities,” System Sciences, 2009. HICSSʼ09. 42nd

Hawaii International Conference on, IEEE, 2009, p. 1–12.

[8] C. Cowan, “Software security for open-source

systems,” Security & Privacy, IEEE, vol. 1, 2003, p. 38–45.

[9] M. Howard and D.C. LeBlanc, Writing Secure Code,

Redmond, WA, USA: Microsoft Press, 2002.

[10] Y. Younan, “Efficient countermeasures for software

vulnerabilities due to memory management errors,”

Katholieke Universiteit Leuven, 2008.

[11] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,

“Predicting vulnerable software components,” Proceedings

of the 14th ACM conference on Computer and

communications security, New York, New York, USA:

ACM, 2007, p. 529–540.

[12] S. Sridhar and K. Altinkemer, “Software

Vulnerabilities: Open Source versus Proprietary Software

Security,” AMCIS 2005 Proceedings, 2005.

[13] C. Payne, “On the security of open source software,”

Information Systems Journal, vol. 12, Jan. 2002, pp. 61-78.

[14] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J.

Cheney, and Y. Wang, “Cyclone: A safe dialect of C,”

USENIX, Monterrey, CA, USA: 2002, pp. 275-288.

[15] M.D. Penta, L. Cerulo, and L. Aversano, “The life and

death of statically detected vulnerabilities: An empirical

study,” Information and Software Technology, vol. 51, Oct.

2009, pp. 1469-1484.

[16] S. Heckman and L. Williams, “A systematic literature

review of actionable alert identification techniques for

automated static code analysis,” Information and Software

Technology, 2010.

[17] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering

false alarms of buffer overflow analysis using SMT

solvers,” Information and Software Technology, vol. 52,

Feb. 2010, pp. 210-219.

[18] S. Grimstad, M. Jorgensen, and K. Molokken-Ostvold,

“Software effort estimation terminology: The tower of

Babel,” Information and Software Technology, vol. 48,

Apr. 2006, pp. 302-310.

[19] P. Mell, K. Scarfone, and S. Romanosky, “A complete

guide to the common vulnerability scoring system version

2.0,” Published by FIRST-Forum of Incident Response and

Security Teams, 2007, pp. 1-23.

[20] R.T. Clemen and R.L. Winkler, “Combining

probability distributions from experts in risk analysis,” Risk

Analysis, vol. 19, 1999, pp. 187-204.

[21] R. Cooke, “Experts in uncertainty: opinion and

subjective probability in science,” 1991.

[22] D.J. Weiss and J. Shanteau, “Empirical Assessment of

Expertise,” Human Factors: The Journal of the Human

Factors and Ergonomics Society, vol. 45, 2003, pp. 104-

116.

[23] Elsevier B.V., “Scopus,” 2011.

[24] Elsevier Inc, “Engineering Village,” 2011.

[25] S.T. Cavusgil and L.A. Elvey-Kirk, “Mail survey

response behavior: A conceptualization of motivating

factors and an empirical study,” European Journal of

Marketing, vol. 32, 1998, p. 1165–1192.

[26] H. Kerzner, Project management: a systems approach

to planning, scheduling, and controlling, New York, NY,

USA: John Wiley & Sons, 2001.

[27] J. Armstrong, Principles of forecasting – A Handbook

for Researchers and Practitioners, Netherlands: Kluwer

Academic Publishers Group, 2001.

[28] P.H. Garthwaite, J.B. Kadane, and A. OʼHagan,

“Statistical methods for eliciting probability distributions,”

Journal of the American Statistical Association, vol. 100,

2005, pp. 680-701.

[29] L.J. Cronbach and R.J. Shavelson, “My Current

Thoughts on Coefficient Alpha and Successor Procedures,”

Educational and Psychological Measurement, vol. 64, Jun.

2004, pp. 391-418.

[30] L.J. Cronbach, “Coefficient alpha and the internal

structure of tests,” Psychometrika, vol. 16, 1951, p. 297–

334.

[31] S. Lin, “A study of expert overconfidence,” Reliability

Engineering & System Safety, vol. 93, May. 2008, pp. 711-

721.

[32] H. Kerzner, Project management: a systems approach

to planning, scheduling, and controlling, New York, NY,

USA: John Wiley & Sons, 2001.

[33] SecurityFocus, “SecurityFocus,” 2011.

