

A test of intrusion alert filtering
based on network information
Teodor Sommestad, Swedish Defence Research Agency (FOI).

Linkoping, Sweden (corresponding author)

Ulrik Franke, Swedish Defence Research Agency (FOI),

Stockholm, Sweden

Abstract: Intrusion detection systems continue to be a promising security

technology. The arguably biggest problem with today’s intrusion detection

systems is the sheer number of alerts they produce for events that are

regarded as benign or non-critical by system administrators. A plethora of

more and less complex solutions has been proposed to filter the relevant

(i.e., correct) alerts that signature based intrusion detection sensors produce.

This paper reports on a test performed to test a number of filtering

alternatives that take advantage of information about static properties of the

monitored computer network, such as vulnerabilities and exposure of ports

and hosts. The results show that none of the filters are able to maintain a

high recall (portion of detected attacks) while increasing the precision

(portion of relevant alerts). At most, precision increased from 1.4 percent to

2.9 percent, and this also resulted in a decrease in recall from 44 percent to

26 percent. Even when combined in an exploratory fashion the filters fail to

provide improved precision. It is concluded that filters based on static

properties of the computer network do not result in clear improvements to

alert-lists produced by signature based intrusion detection systems.

Keywords: intrusion detection, false positives, alert filters

1 Introduction

Intrusion detection systems (IDSs) have been, and continue to be, a

promising security technology that interests both practitioners and scientists.

An IDS can serve both as a real-time tool to prevent ongoing attacks and as

a support to incident analysis performed after-the-fact.

Overall, the research community has been focused on what Axelsson [1]

refers to as anomaly based IDSs and there is no question that many such

solutions have been proposed in the literature. The main alternative to

anomaly based IDSs is the type of solution that Axelsson [1] calls signature

based. As opposed to the research literature, the market is dominated by

signature based network IDSs. A signature based network IDS has a

straightforward design. It compares the network traffic to a set of signatures

associated with attacks and raises an alert if the network traffic looks like

one of the attacks. The dominance of signature based solutions is indicated

in an analysis by the technology analysis firm Gartner, noting that signature

quality remains the primary selection factor on the market for IDSs with

preventive capabilities (i.e., intrusion prevention systems) [2].

Given the extensive use of signature based intrusion detection systems, it

makes sense to ask how the signature based solution should be employed to

be as effective as possible. Because, in spite of being straightforward,

signature based solutions are not unproblematic to employ in the real world.

Werlinger et al. [3] and Goodall et al. [4] found that, in practical

applications, considerable system administrator expertise is required to

configure filters in order to make the rules in the intrusion detection system

effective. However, few reliable empirical tests can be found on how

effective signature based IDSs are at detecting attacks, or how their

effectiveness can be improved.

This paper provides some answers related to the question of how a signature

based solution can be improved using static information about the

monitored system. More precisely, it is tested how the following

information can help to filter the alerts produced by an IDS:

 internal IP-addresses

 open ports

 presence of known vulnerabilities

 vulnerabilities’ base score (severity)

 vulnerabilities’ access vector

 vulnerabilities’ access complexity

 the level of authentication needed to exploit the vulnerabilities.

The underlying idea is to filter out those alerts that match actions of a

presumed and rational attacker, e.g., to remove alerts that cannot be

associated to an exploitable vulnerability. The filters are meant to be

intuitive and should be straightforward for a practitioner to implement in

their environment. As will be described in section 2, some of them have

been previously proposed in the literature.

The filters, and combinations of them, are evaluated by applying them to the

output produced by the commonly used intrusion detection system Snort on

data produced during a cyber-security exercise held in 2012. The filters’

impact are measured by comparing how they influence the number of alerts

produced, the number of alerts raised because of an attack, (true positives),

the number of alerts raised without an attack (false positives) as well as the

information theoretic metrics called precision, recall and F1-measure.

The outline of this paper is as follows. Section 2 describes related work and

previous tests. Section 3 describes the test filters. Section 4 describes the

study design. Section 5 presents the results. Finally, in section 6, the result is

discussed and conclusions are drawn.

2 Related work

A considerable number of research projects have been directed towards

IDSs. It is safe to say that the majority of these projects have resulted in new

or improved ways of determining whether attacks occur, typically by

introducing new ways of classifying network traffic as benign or malicious.

This section will focus on such previous work that (i) addresses

programmable signature based intrusion detection systems and (ii) aims at

filtering the alerts they produce using static information about the monitored

system, i.e., information that does not change very much over time. Section

2.1 describes proposed information for filtering and section 2.2 describes

quantitative evaluations reported in the literature.

2.1 Information used by filters

One suggested way to filter or prioritize alerts is to compare installed

software with the software products mentioned in the alert [5][6] [7] [8] [9]

[10]. For instance, if an alert concerns Linux-exploits but is raised for a

Windows-machine it could be discarded.

A requirement for a successful attack is that the targeted system has a

vulnerability that can be exploited. In the basic case only alerts that match a

vulnerability known to be present in the targeted system is allowed through

the filter ([11] [12] [13] [14] [7] [6] [15] [9]). More elaborate variants

include prioritizing alerts based on the potential impact of the vulnerability

[14] or the priority match between vulnerability and alert [6].

For a network attack to be performed it is necessary that the attacked

software is exposed to the network. Consequently, the network exposure of

the system or its vulnerabilities to the outside is sometimes included in

filters. Open ports as well as IP addresses of machines and alerts are often

used [8] [8][15] [9]. Filtering could also be done probabilistically based on

network topology, where some topologies give some alerts a higher

probability of being true positives [16].

The requirements that alerts should refer to refer to installed software with a

network-exposure and that it should have a vulnerability matching the alert

have also been combined in various ways (see for example [9] [17]).

It should be noted that some of the references above do not propose filters,

but rather that information should be combined into a prioritization or

relevance-rating. Furthermore, several of the proposals are meant to be used

for alert verification. Alert verification aims to remove all alerts that cannot

lead to a system compromise, i.e., it also aims to discard real attack attempts

that will not succeed. While verified alerts certainly are critical to know of,

most system administrators would also want to know if someone has

attempted to attack their system but failed. Thus, the filters investigated in

this article aim to filter out all alerts based on real attacks, but the purpose of

them is to increase precision of the system, i.e., to reduce the number of

false positives that the system administrator needs to manage.

2.2 Quantitative evaluations

Seven quantitative evaluations of filters are summarized in Table 1. Two

used variants of the Darpa dataset, one used the dataset described by

Massicotte et al. [18] and the other four have used custom built their own

test cases. Different criteria are used, e.g., precision (portion of relevant

alerts), portion of correctly discarded/kept alerts, the portion of alerts

reduced, difference in rate of true positives and difference in rate of false

positives.

Performance improvements are in some regards impressive. However, it is

questionable whether these results can be generalized to real-world

scenarios. For instance, the improvements in precision observed by Bolzoni

et al. [19] are for a system without users producing events, and the

representativeness of the results reported by Waita et al. [12] from tests on

the Darpa dataset (anno 1999) may not be generalizable to todays’ computer

systems.

The use of different criteria also makes it difficult to combine the results to

produce generalizations about the effectiveness of these filters or compare

them. For instance, Neelakantan and Rao [13] assess the vaguely defined

“useful alerts”; the number of false positives accidently filtered in the test

made by Waita et al. [12] is not reported; only Gagnon et al. [7] report false

alerts from tests with background data involving simulated computer usage.

Nevertheless, the results of these tests are promising and they suggest that

there is a real potential in rather simple filters taking advantage of

information about the target system. The test described in this paper aims to

clarify the potential of different alert filters.

3 Tested filters

A total of 18 filters were tested. The underlying idea and the information

used in these filters are similar to the tests described in section 2. They used

the following information to filter out relevant alerts: owner of IP-addresses,

open ports on machines, existence of vulnerabilities and the following

attributes from the Common Vulnerability Scoring System (CVSS) [20]:

base score, access complexity, access vector and authentication. Table 2

gives a reference to the information used and a textual description of each

filter.

The idea behind filter 1 is that attacks typically are performed from external,

untrusted, machines. Thus, if an alert does not mention an external machine,

the probability that it is false ought to be higher than usual.

Several of the filters rest on the assumption that attackers are attracted to

machines that are vulnerable, and the more vulnerable the machine is, the

more attracted they ought to be. Filter 2 removes all alerts where the

targeted machine lacks a vulnerability and filters 3-6 removes alerts where

the targeted machine lacks a vulnerability with properties that ought to be

desirable for attackers. The CVSS base score reflects the overall severity by

aggregating characteristics that are constant over time, independent of the

particular environment. For example, a vulnerability is classified as high

severity if it can be exploited over a network without authentication

credentials or if it can be exploited over a network and has low access

complexity. Filters 4-6 are more specific:

 Filter 4 requires that the machine has a vulnerability that can be

exploited over a computer network.

 Filter 5 requires that the machine has a vulnerability with access

complexity low. Low access complexity means, for example, “that

affected configuration is default or ubiquitous” and “the attack can

be performed manually and requires little skill or additional

information gathering”.

 Filter 6 requires that the vulnerability can be exploited without

authentication. In other words, the attacker does not have to be

logged in to the system to be able to exploit the vulnerability.

The remaining filters address the ports mentioned in the alert. Filter 7a

requires that the ports that are mentioned are open while filter 7b requires

that the alert mentions an open port and removes alerts not mentioning

ports. Filters 8a-12b have the same type of vulnerability requirements as

described above with the additional requirement of an open port. In other

words, the software listening to the port must also have a vulnerability (8a-

8b), or a vulnerability with certain attractive characteristics (9a-12b).

4 Study design

The 18 filters presented in Table 2 were tested based on a November 2012

exercise. The test involved the following steps:

1. Preparation of the monitored system environment.

2. Generation of background data and events.

3. Selection an attack scenario and injection of attacks.

4. Configuration of detection sensors

5. Encoding events and alerts

6. Analysis of effectiveness

In the sections below each of these are described in further. The files related

to this test have been made publicly available (see [21]) and the authors of

this paper can provide additional details concerning parameter setting and

the study design.

4.1 Preparation of the monitored system environment

In this test, computer networks were instantiated within CRATE, the cyber

range of the Swedish Defence Research Agency (FOI). Over a thousand

virtual machines were deployed, together forming computer networks of

various size and complexity. Of these, 153 machines in nine fictitious

organizations of different type were monitored and considered targets (cf.

section 4.3). Some organizations’ networks consisted of a few computers to

represent a small organization or personal network; other organizations’

networks consisted of several VLANs with firewalls limiting access

possibilities between them. Figure 1 illustrates the routing infrastructure in

the synthetic environment and Figure 2 illustrates one of the monitored

computer networks.

A number of different operating systems and applications were instantiated

in these networks. Different patch levels and versions of Windows (2000,

XP, 2003, 7, 2008) and a number versions of Linux-based distributions

(Gentoo, Debian, Ubuntu) were used. These ran a number of desktop

applications and server applications. Among other, the client-side

applications included different versions of Adobe Reader, software

development tools like Visual Studio, web browsers like Internet Explorer

or Firefox, and applications of the Microsoft Office suite or Open Office.

Server-side applications included different versions of Wordpress,

phpMyAdmin, IIS, Domain Controllers, network infrastructure services

(e.g., DNS and DHCP), and FTP servers. The aim was that the deployed

applications should be representative of the standard software found in most

enterprise computer networks. However, to enable a meaningful exercise for

the attacking teams and to produce enough data for the test, these

applications were more vulnerable than the ones found in the typical

enterprise (i.e., they had not been updated and patched recently). Also,

custom built applications (e.g., interconnected spreadsheet applications) and

larger enterprise systems (e.g., ERP systems) were not present.

4.2 Generation of background data and events

An essential component in a test addressing precision and false positives of

an IDS is the benign background traffic. Without background traffic,

detection of attacks is trivial (every event is an attack). Background traffic is

thus essential to the problem: since the vast majority of the traffic in an

organization is benign, even a small share of false alerts will be significant

in absolute numbers and cause a problem for the system administrator [22].

Two main alternatives are available to produce background traffic:

recording from real networks or simulating synthetic events [23].

Recordings from real networks have the advantage of providing realism.

However, there are a number of problems associated with using real data for

research [23]. First, it is non-trivial to obtain permission to inject attacks in

real operational systems since they can cause disturbances. Second,

confidentiality constraints make it difficult to share the data within the

research community, and thus difficult to the requirement of repeatability

associated with the scientific process. Third, there is no guarantee that the

recorded background traffic is free from malicious acts that an IDS should

raise an alert for. In addition, for the type of test performed in this paper a

fourth problem exists. Since the test aims to investigate how vulnerability

scanners can improve the precision and recall of an IDS it is of essence that

the monitored systems actually contain a considerable number of exploitable

vulnerabilities. Thus, a real environment with questionable security

management is needed – but as per the third requirement, it must

nevertheless be free from attacks not inserted by the researcher.

Simulated synthetic events and simulated traffic is free from these problems.

However, it offers no guarantee of being realistically close to any particular

environment and is therefore problematic to make generalizations from. In

this test, background data was produced synthetically by producing events

through the software applications installed on the client machines. To

provide more realism, the events were produced based on recordings made

in real systems.

The events were produced with scripts implemented in Auto IT [24] to

emulate user actions by using installed applications to send emails to each

other, surf websites in the environment, open emails/attachments and access

files on local machines.

In order to produce a realistic behavioral pattern, the emulated users

performed these behaviors according to a predefined instruction list created

based on the actions of real users in an office environment. The instruction

list was produced by collecting the historic usage of web browsers, desktop

applications and the outgoing emails of 17 individuals in three organizations

(two research organizations and one game developer). To enable a variety of

user behavior the historic records (covering months to years of computer

usage) were split into one-week instruction sets, which allowed thousands of

instruction lists (i.e. “users”) to be created. Since the real users’ usage of

desktop applications (e.g., the websites they visited) lacked meaning in the

isolated environment of this test, the user agents employed in this test

translated each website, user and file into something meaningful in the test

environment. For instance, a query made on www.google.com was

interpreted as query made on www.boogle.ex, the search engine of the

fictive test environment that returns a result meaningful in this environment.

Thus, the activities performed by the scripted user agents followed the same

sequence and had the same intensity as real users do during a work week.

However, the content of mail, files and websites they accessed are unlikely

to be representative of the content the real users accessed. Also, the scripted

users did only perform standard behavior of users – more sporadic tasks like

installation of custom software applications or administrative tasks were not

performed in this test.

4.3 Selection of an attack scenario and injection of attacks

In this test two independent teams attacked the computer networks in order

to find secret keys hidden in them. One team consisted of security

researchers from the Swedish Defence Research Agency, the other team

consisted of security specialists from the Swedish Armed Forces Network

and Telecommunications Unit. Both teams restricted themselves to using

only publicly available tools and publicly known exploits, e.g., the tools and

exploits packed with the operating system Backtrack 5.

The attacks started at noon a Tuesday and continued until noon a Thursday.

The attackers had no prior knowledge about which machines the secret keys

were hidden in, but were told that they were in some of the nine monitored

networks. As a result, a mix of reconnaissance and penetration activities was

conducted. According to their own activity logs the two teams conducted

278 penetration attempts and network scans (or other reconnaissance related

activates) aimed at the network monitored in this test. These penetration

attempts led to the compromise of 98 machines.

During the test, a system administrator monitored the status of the systems

and the intrusion detection alerts in real time. When this administrator saw

obvious and loud intrusions he responded and tried to revoke the access

credentials obtained. As a result, some attacks are similar to each other as

the attackers then tried to regain the revoked credentials.

4.4 Configuration of detection sensors

Nine networks were monitored in this test. In these networks, all traffic was

monitored using Snort 2.9.0.5 running a snapshot of the full rule set dated

March 8, 2011.

Snort was configured with the default rule set to ignore alerts of priority 0

(“None”) and priority 4 (“No priority”). In addition, the following rules

were ignored because of the numerous false alerts they produced in the test

environment: SID 129-4 on incorrect timestamps in packets, SID 129-12

triggered by small packets, SID 399 on unreachable hosts and SID 3218 on

machines trying to connect to a server using Microsoft RPC DCOM.

During the time period of this test, a total of 624,218 alerts were generated

by Snort. The analysis and comparison to attack logs show a somewhat

stochastic behavior where the same type of action by the attackers generated

different responses from Snort (occasionally no response at all). One

possible cause of this stochastic behavior is dropped packets due to

performance problems. While this is possible, the stochastic behavior seems

uncorrelated to periods of high network load. Also, the hardware used in

this test is well above the recommended minimum. At most the sensors

received 3.5 Gigabit per hour (on average 1 Mbit/s), while [25] states “A

very rough and conservative rule of thumb is that Snort running on a single

CPU can examine 200Mbits/sec of traffic without dropping an appreciable

number of packets”. Thus, it appears unlikely that capacity problems caused

the stochastic behavior and more likely that other factors (e.g., features of

the attackers’ actions) did.

4.5 Encoding events and alerts

To assess the impact of the filters, the number of detected attacks and the

number of false alerts were assessed. From these, the precision (fraction of

alerts that are due to an attack) and the recall (fraction of attacks that are

detected) were derived.

Logs manually created by the attacking teams were used to identify attacks

and scans produced. These logs were used to mark each recorded alert as

either correct (i.e., correctly indicating an ongoing attacker’s activity) or

incorrect (i.e., unrelated to attackers’ activities) post hoc. All other alerts

were treated as incorrect, i.e., false positives. Thus, only those actions that

the attackers regarded as attacks were seen as real attacks. This is obviously

a crude interpretation, although it is difficult to identify a better alternative.

Comparisons between screen recordings from the attackers computers does

for instance show that they did not regard use of compromised machines as

an attack in itself and they seldom regarded browsing public services or

sending PING request to public services as attacks.

The recorded alert was coded as correct true positives if it was seen as

plausible that an operator receiving the alert would understand that the

corresponding attack was ongoing. This means, for instance, that alerts

related to PING-requests and overlapping TCP packets that followed the

normal pattern and intensity were considered false positives even though

they may stem from the attackers actions.

4.6 Analysis of effectiveness

Three of the filters are based on detailed information concerning the

monitored computer network. More precisely, they require: network

address, open ports/services, installed software products and security

vulnerabilities. Internal and external network addresses was retrieved from

configuration files used to deploy the machines. The other information was

gathered using authenticated network scans with Nexpose. To our

knowledge, the performance of Nexpose when it comes to true positives and

false negatives is comparably good [26].

Intrusion alerts, attackers’ logs and vulnerability information was structured

in a relational database. The filters were tested by querying the database

post-hoc and counting: total number of alerts that remained, alerts marked

as correct and the unique number of attacks detected (an attack can raise

multiple alert). From these the information theoretic metrics precision and

recall and the F1-measure were calculated. Precision represent the

probability that an alert is raised because of an attack, recall represent the

probability that an attack raises an alert at all, and the F1-measure

aggregates these as the harmonic mean of precision and recall.

5 Results

As shown in Table 3, all filters result in a decreased recall (portion of

detected attacker actions) in comparison to the baseline with no filter.

As one would expect, less restrictive filters, like filter 2 which only require

the existence of a vulnerability in the targeted host or 7a which requires that

ports mentioned in the alert are open, reduce the recall the least. However,

the ones that maintain highest recall (i.e. filters 2, 6, 7a and 8a) still produce

a large number of alerts and a large portion of false positives. The large

portion of false positives can be seen by the low precision they result in.

They all produce lower a lower precision than the baseline. Thus, they tend

to filter out a larger portion of true positives than false positives.

As Figure 3 illustrates, no filter performs strictly better that the baseline in

terms of precision and recall, but several filters perform strictly worse (i.e.,

with both precision and recall that is lower than the baseline). The only filter

leading to a considerable improvement in precision (to 2.9% from 1.4%) is

filter 1, based on the owner of IP-addresses in the alerts. However, while

this filter doubles the precision it reduces the recall by almost half.

Several of these filters are combinations of other filters, as Table 2 shows.

In addition, the CVSS-severity score is an aggregate of filters 4, 5 and 6.

These relationships explain why several filters produce identical results. For

instance, filter number 4 and 5 produce the same results because all

machines with vulnerabilities of CVSS-severity seven and above also have

vulnerabilities that can be exploited over a network.

These poor results lead to the question if other combinations of filters could

possibly yield better precision and recall. Thus, after the test other

meaningful combinations of filters were sought. Two types of combinations

were seen as theoretically sound, i.e., they were believed to reflect the

decision model and actions of attackers. First, it was considered possible

that the aggregation of Authentication, Access complexity and Access vector

made by the CVSS did not reflect the attractiveness of the vulnerability to

attackers. Filters with an AND-combination of these three and all pairwise

AND-combinations of them were tested. All these AND-combinations

perform as filters 4 and 5. The OR-combination of Authentication, Access

complexity and Access vector was also tested¸ based on the idea that a

permissive state in any of these would attract an attacker. This OR-

combination had a recall as almost high as when no filter is used, but a poor

precision (0.7%). Another combination that seemed promising was to

require filter 1 in combination with the other filters, i.e., to always require

that and external host is involved in the alarm. However, none of these

seventeen combinations produced a higher precision than filter 1 alone, but

all produced a lower recall. Thus, none of these combined filters improves

the filtering.

6 Discussion and conclusions

To offer control and make sure that operational systems were not impacted

this test was performed in a synthetic environment using a fictitious

scenario. As a result, there are a number of factors in this test with

questionable ecological validity (i.e., realistic conditions). Among other

things, it could be argued that the background traffic was not diverse

enough, that the targeted networks were unusually small or that the attackers

and their attacks were overly intense. These factors most probably influence

the performance of the IDS as measured in this test and it can be argued that

the performance of the IDS is exaggerated because of unusually beneficial

conditions. For instance, if attacks would be stretched out over a longer

period of time, with background traffic intensity remaining the same, it

would certainly reduce the precision of the IDS. Thus, it is easy to identify

factors that may have an influence on the efficacy of an IDS and question

how they were represented in this test. However, for most of these factors it

appears unlikely that they influenced the relative performance of the filters

compared to the baseline with no filter.

In other words, most of the factors that influence the efficacy of an IDS

ought to have the same (relative) impact on all tested filters. In fact, the only

factors we can identify that are likely to have an impact on the relative

performance of the filters are the vulnerabilities present in the network and

the attacks performed against the networks. Clearly, the vulnerability based

filters would perform better if the information on relevant vulnerabilities

would be more accurate. Thus, if a more competent vulnerability scanner

was used or intelligence was available on vulnerabilities that attackers tend

to exploit these filters ought to perform better. Conversely, if attackers

possess exploits of zero-day vulnerabilities the performance of these filters

would decrease. While vulnerability information and the attacks used ought

to influence the results of this test we believe that this scenario, with a

commonly used vulnerability scanner and publicly known attacks,

represents a relevant and realistic case.

When it comes to the practical relevance of this study there are also

potential issues associated with the encoding and analysis method used. As

mentioned in section 4.5 the definition of an attack, and consequently a true

positive, is crude but straightforward. Although most real IDS users

probably consider some types of attack steps as more important to detect

than other, no structured attempt was made to rate the importance of

different actions in the attacker’s log book and take this into consideration

in the evaluation. For instance, if alerts on penetration attempts are valued

differently than alerts on reconnaissance (e.g., network scans) the following

indicates how the filters influence alert quality. Without filter, 42 percent of

the penetration attempts and 43 percent of the reconnaissance activities

raised alerts; with filter number 7b or 8b, 24 percent of the penetration

attempts and 10 percent of the reconnaissance activities raised alerts. Thus,

the filters are more sensitive to penetration attempts, but the difference is

not dramatic.

While the ecological validity of this test can be questioned and a crude

evaluation method was used, it can be concluded that filters based solely on

static information about the monitored computer network do not solve the

problem of false alerts associated with IDSs. With Snort and Nexpose, the

best filter in terms of precision increased the portion of relevant alerts from

1.4 percent to 2.9 percent and this came at the cost of reducing the portion

of detected attacks from above 44 percent to 27 percent. In absolute terms it

is likely that the results overstate the efficacy of IDS-alternatives because of

the high attack intensity and standardized background traffic. Still, the best

filter raised 34 false alerts for every correct alert (2.9% precision) and only

raised alerts for one attack out of four. Based on results in other fields than

network security, Axelsson states that a very conservative estimate is that

more correct than incorrect alerts (i.e., over 50% precision) is required to

maintain system operator faith in a detection system [22]. The results

obtained in this test makes it is hard to see how any filter based solely on

static information about the computer network can come close to this under

somewhat realistic conditions.

7 Acknowledgments

This work has been supported by Security Link, in the Strategic Area for

security and crisis management research, funded by the Swedish

Government. Hannes Holm gave valuable remarks on the manuscript.

8 References

1. Axelsson S. Intrusion detection systems: A survey and taxonomy. Technical
Report 99 -15. Göteborg, Sweden, 2000.

2. Young G, Pescatore J. Magic quadrant for network intrusion prevention system
appliances, Gartner RAS Core Research Note G00167309 2009, Gartner,
2009.

3. Werlinger R, Hawkey K, Muldner K, Jaferian P, Beznosov K. The challenges of
using an intrusion detection system: is it worth the effort? SOUPS ’08
Proceedings of the 4th symposium on Usable privacy and security, 2008;
107–118.

4. Goodall JR, Lutters WG, Komlodi A. Developing expertise for network intrusion
detection. Information Technology & People, 2009; 22; 92–108.

5. Bakar, N, Belaton B. Towards Implementing Intrusion Alert Quality Framework.
In First International Conference on Distributed Frameworks for Multimedia
Applications, 2005; 198–205. doi:10.1109/DFMA.2005.49.

6. Njogu HW, Jiawei L, Kiere JN, Hanyurwimfura D. A comprehensive vulnerability
based alert management approach for large networks. Future Generation
Computer Systems, 2013; 29; 27–45. doi:10.1016/j.future.2012.04.001.

7. Gagnon F, Massicotte F, Esfandiari B. Using Contextual Information for IDS
Alarm Classifi•cation. In Proceedings of International Conference, DIMVA,
Como, Italy, 2009; 147–156.. doi:10.1007/978-3-642-02918-9_9.

8. Meng Y, Li W. Constructing Context-based Non-Critical Alarm Filter in Intrusion
Detection. In The Seventh International Conference on Internet Monitoring
and Protection, 2012; 75–81.

9. Xiao M, Xiao D. Alert Verification Based on Attack Classification in Collaborative
Intrusion Detection. Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing (SNPD 2007), 2007; 739–744. doi:10.1109/SNPD.2007.216.

10. Hubballi N, Biswas S., Nandi S. Network specific false alarm reduction in
intrusion detection system. Security and Communication Networks, 20122; 4:
1339–1349. doi:10.1002/sec.261.

11. Gula R. Correlating ids alerts with vulnerability information Technical report.
Tenable Network Security. 2002.

12. Njogu, HW, Jiawei L. Using Alert Cluster to reduce IDS alerts. In 2010 3rd
International Conference on Computer Science and Information Technology,
2010; 467–471. doi:10.1109/ICCSIT.2010.5563925.

13. Neelakantan S, Rao S. A Threat-Aware Signature Based Intrusion-Detection
Approach for Obtaining Network-Specific Useful Alarms. In 2008 The Third
International Conference on Internet Monitoring and Protection, 2008; 80–
85.. doi:10.1109/ICIMP.2008.24.

14. Gupta D, Joshi PS, Bhattacharjee K, Mundada RS. IDS alerts classification using
knowledge-based evaluation. 2012 Fourth International Conference on
Communication Systems and Networks (COMSNETS 2012), 2002; 1–8.
doi:10.1109/COMSNETS.2012.6151339.

15. Haukeli J. False positive reduction through IDS network awareness. Masters
thesis, Oslo University College, Oslo, 2012.

16. Spathoulas GP, Sokratis KK. Reducing false positives in intrusion detection
systems. Computers & Security 2010; 29; 35–44.
doi:10.1016/j.cose.2009.07.008.

17. Chandrasekaran M, Baig M, Upadhyaya S. AVARE: Aggregated Vulnerability
Assessment and Response against Zero-day Exploits. In 2006 IEEE
International Performance Computing and Communications Conference,
2006; 603–610. doi:10.1109/.2006.1629458.

18. Massicotte F, Gagnon F, Labiche Y, Briand L, Couture M. Automatic Evaluation
of Intrusion Detection Systems. 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), 2006; 361–370.
doi:10.1109/ACSAC.2006.15.

19. Bolzoni D, Crispo B, Etalle S. ATLANTIDES: An architecture for alert verification
in network intrusion detection systems. In Proceedings of the 21st Large
Installation System Administration Conference (LISA ’07), 2007; 141–152.

20. Mell P, Scarfone K, Romanosky, S. A complete guide to the common
vulnerability scoring system version 2.0. FIRST-Forum of Incident Response
and Security Teams, 2007, accessed 2014-06-13.
http://www.first.org/cvss/cvss-guide

21. Sommestad T, Wedlin M. CRATE - Cyber Range And Training Environment.
Open datasets produced in CRATE, Swedish Defence Research agency, 2012,
accessed 2014-06-13. http://www.foi.se/en/Our-Knowledge/Information-
Security-and-Communication/Information-Security/Lab-resources/CRATE/.

22. Axelsson S. The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security, 2000; 3; 186–205.
doi:10.1145/357830.357849.

23. Athanasiades N, Abler R, Levine J, Owen H, Riley G.. Intrusion detection testing
and benchmarking methodologies. IWIAS 2003. Proceedings. First IEEE
International Workshop on nformation Assurance. 2003; 63–72.
doi:10.1109/IWIAS.2003.1192459.

24. Bennett J. AutoIt Script Editor. AutoIt Consulting Ltd, 2013, accessed 2014-06-
13. http://www.autoitscript.com/site/autoit-script-editor/.

25. Geekery. Capacity Planning for Snort IDS. accessed 2014--06-13, 2014.
http://mikelococo.com/2011/08/snort-capacity-planning/.

26. Holm H, Sommestad T, Almroth J, Persson, M.. 2011. A quantitative evaluation
of vulnerability scanning. Information Management & Computer Security 19:
231–247. doi:10.1108/09685221111173058.

Table 1. Summary of quantitative evaluations of filters.

Study Information used Data used in

evaluation

Result

[19]  Installed

software

 Network

exposure

 Vulnerability

Snort alerts from a

custom made testbed

of six machines

exposed to selected

attacks launched with

public tools.

Precision improved from

12-17% to 92-97%,

depending on attack.

[7]  Installed

software

 Vulnerability

Snort alerts from the

dataset described in

[18].

Almost all discarded alerts

were non-critical (98-

100%), depending on filter.

The portion of non-critical

alerts successfully classified

as non-critical was 15% for

the simplest filter and 73 %

if software and vulnerability

combination was

considered,

[12]  Network

exposure

 Installed

software

 Vulnerability

The Darpa datset and

their own office

network.

The number of alerts is

reduced with 78% on the

Darpa set and with 81% on

their own network. The

number of true and false

positives lost is not

reported.

[13]  Vulnerability A scenario with

“various attacks”

operating systems

such as Windows

2000, Windows 2003

and Linux Red Hat.

The rate of “useful alerts”

increased from 15-42% to

22-100%, depending on

protocol.

[10]  Vulnerability A testbed with

operating systems

such as Windows

98/200/2003/XP,

different Linux

distributions services

such as FTP and

Telnet. No

background traffic,

but nearly 80% of the

attacks were not

matching

vulnerability.

After training of the neural

network the rate of alerts

targeting an existing

vulnerability increased from

20-30% to 90-100% with

only some small drops in

true positives (96-100%

compared to 90-100%).

Table 2. Filter, information they use and a textual descriptions of them.

ID

IP
-a

d
d

r
es

s
o

w
n

e
r

O
p

e
n

p

o
r
ts

 o
n

 m
a
c
h

in
e
s

E
x
is

te
n

ce
 o

f
v

u
ln

er
a

b
il

it
ie

s

C
V

S
S

 b
a

se
 s

c
o
r
e

C
V

S
S

 a
c
ce

ss
 v

ec
to

r

C
V

S
S

 a
c
ce

ss
 c

o
m

p
le

x
it

y

C
V

S
S

 a
u

th
e
n

ti
ca

ti
o

n

Alerts kept if

1 ● The alert involves an external host.

2 ● The targeted host in the alert has a vulnerability.

3 ● ●

The targeted host in the alert has a vulnerability with CVSS base score of high (above
7).

4 ● ● The targeted host in the alert has a vulnerability with CVSS access vector network.

5 ● ● The targeted host in the alert has a vulnerability with CVSS access complexity low.

6 ●

 ●
The targeted host in the alert has a vulnerability with where the level of authentication

needed to exploit is none.

7a ● No port is mentioned in the alert or the alert targets an open port.

7b ● The alert targets an open port.

8a ● ●

No port is mentioned in the alert or the alert targets an open port where the associated

software has a vulnerability.

8b ● ● The alert targets an open port where the associated software has a vulnerability.

9a ● ●

No port is mentioned in the alert or the alert targets an open port where the associated

software has a vulnerability with CVSS score of 7.0 or above.

9b ● ●

The alert targets an open port where the associated software has a vulnerability with

CVSS score of high (above 7).

10a ● ●
No port is mentioned in the alert or the alert targets an open port where the associated
software has a vulnerability with access vector of network.

10b ● ●
The alert targets an open port where the associated software has a vulnerability with

access vector of network.

11a ●

●
No port is mentioned in the alert or the alert targets an open port where the associated

software has a vulnerability with access complexity low.

11b ●

●
The alert targets an open port where the associated software has a vulnerability with
access complexity low.

12a ●

 ●
No port is mentioned in the alert or the alert targets an open port where the associated

software has a vulnerability where the level of authentication needed to exploit is none.

12b ●

 ●
The alert targets an open port where the associated software has a vulnerability where

the level of authentication needed to exploit is none.

Table 3. Performance of the filters.

Filter Number

of alerts

True

positives

Attacks

detected

Precision Recall F1-

measure

Baseline 624 218 8 819 123 1.4% 44.2% 2.7%

1 288 390 8 313 74 2.9% 26.6% 5.2%

2 502 162 4 137 116 0.8% 41.7% 1.6%

3 256 821 2 779 90 1.1% 32.4% 2.1%

4 17 678 158 8 0.9% 2.9% 1.4%

5 17 678 158 8 0.9% 2.9% 1.4%

6 479 636 3 475 114 0.7% 41.0% 1.4%

7a 569 548 6 807 108 1.2% 38.9% 2.3%

7b 40 407 777 48 1.9% 17.3% 3.5%

8a 569 548 6 807 108 1.2% 38.9% 2.3%

8b 40 407 777 48 1.9% 17.3% 3.5%

9a 227 718 1 550 77 0.7% 27.7% 1.3%

9b 22 849 398 29 1.7% 10.4% 3.0%

10a 228 040 764 45 0.3% 16.2% 0.7%

10b 17 678 158 8 0.9% 2.9% 1.4%

11a 228 040 764 45 0.3% 16.2% 0.7%

11b 17 678 158 8 0.9% 2.9% 1.4%

12a 425814 1 615 87 0.4% 31.3% 0.7%

12b 23209 399 29 1.7% 10.4% 3.0%

