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Abstract: Intrusion detection systems continue to be a promising security 

technology. The arguably biggest problem with today’s intrusion detection 

systems is the sheer number of alerts they produce for events that are 

regarded as benign or non-critical by system administrators. A plethora of 

more and less complex solutions has been proposed to filter the relevant 

(i.e., correct) alerts that signature based intrusion detection sensors produce. 

This paper reports on a test performed to test a number of filtering 

alternatives that take advantage of information about static properties of the 

monitored computer network, such as vulnerabilities and exposure of ports 

and hosts. The results show that none of the filters are able to maintain a 

high recall (portion of detected attacks) while increasing the precision 

(portion of relevant alerts). At most, precision increased from 1.4 percent to 

2.9 percent, and this also resulted in a decrease in recall from 44 percent to 

26 percent. Even when combined in an exploratory fashion the filters fail to 

provide improved precision. It is concluded that filters based on static 

properties of the computer network do not result in clear improvements to 

alert-lists produced by signature based intrusion detection systems.  
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1 Introduction 

Intrusion detection systems (IDSs) have been, and continue to be, a 

promising security technology that interests both practitioners and scientists. 

An IDS can serve both as a real-time tool to prevent ongoing attacks and as 

a support to incident analysis performed after-the-fact.  

Overall, the research community has been focused on what Axelsson [1] 

refers to as anomaly based IDSs and there is no question that many such 

solutions have been proposed in the literature. The main alternative to 

anomaly based IDSs is the type of solution that Axelsson [1] calls signature 

based. As opposed to the research literature, the market is dominated by 

signature based network IDSs. A signature based network IDS has a 

straightforward design. It compares the network traffic to a set of signatures 

associated with attacks and raises an alert if the network traffic looks like 



 

 

one of the attacks. The dominance of signature based solutions is indicated 

in an analysis by the technology analysis firm Gartner, noting that signature 

quality remains the primary selection factor on the market for IDSs with 

preventive capabilities (i.e., intrusion prevention systems) [2]. 

Given the extensive use of signature based intrusion detection systems, it 

makes sense to ask how the signature based solution should be employed to 

be as effective as possible. Because, in spite of being straightforward, 

signature based solutions are not unproblematic to employ in the real world. 

Werlinger et al. [3] and Goodall et al. [4] found that, in practical 

applications, considerable system administrator expertise is required to 

configure filters in order to make the rules in the intrusion detection system 

effective. However, few reliable empirical tests can be found on how 

effective signature based IDSs are at detecting attacks, or how their 

effectiveness can be improved.  

This paper provides some answers related to the question of how a signature 

based solution can be improved using static information about the 

monitored system. More precisely, it is tested how the following 

information can help to filter the alerts produced by an IDS: 

 internal IP-addresses 

 open ports 

 presence of known vulnerabilities 

 vulnerabilities’ base score (severity) 

 vulnerabilities’ access vector  

 vulnerabilities’ access complexity 

 the level of authentication needed to exploit the vulnerabilities.  

The underlying idea is to filter out those alerts that match actions of a 

presumed and rational attacker, e.g., to remove alerts that cannot be 

associated to an exploitable vulnerability. The filters are meant to be 

intuitive and should be straightforward for a practitioner to implement in 

their environment. As will be described in section 2, some of them have 

been previously proposed in the literature.  

The filters, and combinations of them, are evaluated by applying them to the 

output produced by the commonly used intrusion detection system Snort on 

data produced during a cyber-security exercise held in 2012. The filters’ 

impact are measured by comparing how they influence the number of alerts 

produced, the number of alerts raised because of an attack, (true positives), 

the number of alerts raised without an attack (false positives) as well as the 

information theoretic metrics called precision, recall and F1-measure. 



 

 

The outline of this paper is as follows. Section 2 describes related work and 

previous tests. Section 3 describes the test filters. Section 4 describes the 

study design. Section 5 presents the results. Finally, in section 6, the result is 

discussed and conclusions are drawn. 

2 Related work 

A considerable number of research projects have been directed towards 

IDSs. It is safe to say that the majority of these projects have resulted in new 

or improved ways of determining whether attacks occur, typically by 

introducing new ways of classifying network traffic as benign or malicious. 

This section will focus on such previous work that (i) addresses 

programmable signature based intrusion detection systems and (ii) aims at 

filtering the alerts they produce using static information about the monitored 

system, i.e., information that does not change very much over time. Section 

2.1 describes proposed information for filtering and section 2.2 describes 

quantitative evaluations reported in the literature.  

2.1 Information used by filters 

One suggested way to filter or prioritize alerts is to compare installed 

software with the software products mentioned in the alert [5][6] [7] [8] [9] 

[10]. For instance, if an alert concerns Linux-exploits but is raised for a 

Windows-machine it could be discarded.  

A requirement for a successful attack is that the targeted system has a 

vulnerability that can be exploited. In the basic case only alerts that match a 

vulnerability known to be present in the targeted system is allowed through 

the filter ([11] [12] [13] [14] [7] [6] [15] [9]). More elaborate variants 

include prioritizing alerts based on the potential impact of the vulnerability 

[14] or the priority match between vulnerability and alert [6]. 

For a network attack to be performed it is necessary that the attacked 

software is exposed to the network. Consequently, the network exposure of 

the system or its vulnerabilities to the outside is sometimes included in 

filters. Open ports as well as IP addresses of machines and alerts are often 

used [8] [8][15] [9]. Filtering could also be done probabilistically based on 

network topology, where some topologies give some alerts a higher 

probability of being true positives [16].  

The requirements that alerts should refer to refer to installed software with a 

network-exposure and that it should have a vulnerability matching the alert 

have also been combined in various ways (see for example [9] [17]).  

It should be noted that some of the references above do not propose filters, 

but rather that information should be combined into a prioritization or 

relevance-rating. Furthermore, several of the proposals are meant to be used 



 

 

for alert verification. Alert verification aims to remove all alerts that cannot 

lead to a system compromise, i.e., it also aims to discard real attack attempts 

that will not succeed. While verified alerts certainly are critical to know of, 

most system administrators would also want to know if someone has 

attempted to attack their system but failed. Thus, the filters investigated in 

this article aim to filter out all alerts based on real attacks, but the purpose of 

them is to increase precision of the system, i.e., to reduce the number of 

false positives that the system administrator needs to manage. 

2.2 Quantitative evaluations 

Seven quantitative evaluations of filters are summarized in Table 1. Two 

used variants of the Darpa dataset, one used the dataset described by 

Massicotte et al. [18] and the other four have used custom built their own 

test cases. Different criteria are used, e.g., precision (portion of relevant 

alerts), portion of correctly discarded/kept alerts, the portion of alerts 

reduced, difference in rate of true positives and difference in rate of false 

positives. 

Performance improvements are in some regards impressive. However, it is 

questionable whether these results can be generalized to real-world 

scenarios. For instance, the improvements in precision observed by Bolzoni 

et al. [19] are for a system without users producing events, and the 

representativeness of the results reported by Waita et al. [12] from tests on 

the Darpa dataset (anno 1999) may not be generalizable to todays’ computer 

systems.  

The use of different criteria also makes it difficult to combine the results to 

produce generalizations about the effectiveness of these filters or compare 

them. For instance, Neelakantan and Rao [13] assess the vaguely defined 

“useful alerts”; the number of false positives accidently filtered in the test 

made by Waita et al. [12] is not reported; only Gagnon et al. [7] report false 

alerts from tests with background data involving simulated computer usage. 

Nevertheless, the results of these tests are promising and they suggest that 

there is a real potential in rather simple filters taking advantage of 

information about the target system. The test described in this paper aims to 

clarify the potential of different alert filters. 

3 Tested filters 

A total of 18 filters were tested. The underlying idea and the information 

used in these filters are similar to the tests described in section 2. They used 

the following information to filter out relevant alerts: owner of IP-addresses, 

open ports on machines, existence of vulnerabilities and the following 

attributes from the Common Vulnerability Scoring System (CVSS) [20]: 

base score, access complexity, access vector and authentication. Table 2 



 

 

gives a reference to the information used and a textual description of each 

filter. 

The idea behind filter 1 is that attacks typically are performed from external, 

untrusted, machines. Thus, if an alert does not mention an external machine, 

the probability that it is false ought to be higher than usual.  

Several of the filters rest on the assumption that attackers are attracted to 

machines that are vulnerable, and the more vulnerable the machine is, the 

more attracted they ought to be. Filter 2 removes all alerts where the 

targeted machine lacks a vulnerability and filters 3-6 removes alerts where 

the targeted machine lacks a vulnerability with properties that ought to be 

desirable for attackers. The CVSS base score reflects the overall severity by 

aggregating characteristics that are constant over time, independent of the 

particular environment. For example, a vulnerability is classified as high 

severity if it can be exploited over a network without authentication 

credentials or if it can be exploited over a network and has low access 

complexity. Filters 4-6 are more specific: 

 Filter 4 requires that the machine has a vulnerability that can be 

exploited over a computer network. 

 Filter 5 requires that the machine has a vulnerability with access 

complexity low. Low access complexity means, for example, “that 

affected configuration is default or ubiquitous” and “the attack can 

be performed manually and requires little skill or additional 

information gathering”. 

 Filter 6 requires that the vulnerability can be exploited without 

authentication. In other words, the attacker does not have to be 

logged in to the system to be able to exploit the vulnerability. 

The remaining filters address the ports mentioned in the alert. Filter 7a 

requires that the ports that are mentioned are open while filter 7b requires 

that the alert mentions an open port and removes alerts not mentioning 

ports. Filters 8a-12b have the same type of vulnerability requirements as 

described above with the additional requirement of an open port. In other 

words, the software listening to the port must also have a vulnerability (8a-

8b), or a vulnerability with certain attractive characteristics (9a-12b). 

4 Study design 

The 18 filters presented in Table 2 were tested based on a November 2012 

exercise. The test involved the following steps: 

1. Preparation of the monitored system environment. 

2. Generation of background data and events. 

3. Selection an attack scenario and injection of attacks.  



 

 

4. Configuration of detection sensors 

5. Encoding events and alerts  

6. Analysis of effectiveness 

In the sections below each of these are described in further. The files related 

to this test have been made publicly available (see [21]) and the authors of 

this paper can provide additional details concerning parameter setting and 

the study design. 

4.1 Preparation of the monitored system environment 

In this test, computer networks were instantiated within CRATE, the cyber 

range of the Swedish Defence Research Agency (FOI). Over a thousand 

virtual machines were deployed, together forming computer networks of 

various size and complexity. Of these, 153 machines in nine fictitious 

organizations of different type were monitored and considered targets (cf. 

section 4.3). Some organizations’ networks consisted of a few computers to 

represent a small organization or personal network; other organizations’ 

networks consisted of several VLANs with firewalls limiting access 

possibilities between them. Figure 1 illustrates the routing infrastructure in 

the synthetic environment and Figure 2 illustrates one of the monitored 

computer networks. 

A number of different operating systems and applications were instantiated 

in these networks. Different patch levels and versions of Windows (2000, 

XP, 2003, 7, 2008) and a number versions of Linux-based distributions 

(Gentoo, Debian, Ubuntu) were used. These ran a number of desktop 

applications and server applications. Among other, the client-side 

applications included different versions of Adobe Reader, software 

development tools like Visual Studio, web browsers like Internet Explorer 

or Firefox, and applications of the Microsoft Office suite or Open Office. 

Server-side applications included different versions of Wordpress, 

phpMyAdmin, IIS, Domain Controllers, network infrastructure services 

(e.g., DNS and DHCP), and FTP servers. The aim was that the deployed 

applications should be representative of the standard software found in most 

enterprise computer networks. However, to enable a meaningful exercise for 

the attacking teams and to produce enough data for the test, these 

applications were more vulnerable than the ones found in the typical 

enterprise (i.e., they had not been updated and patched recently). Also, 

custom built applications (e.g., interconnected spreadsheet applications) and 

larger enterprise systems (e.g., ERP systems) were not present.  

4.2 Generation of background data and events  

An essential component in a test addressing precision and false positives of 

an IDS is the benign background traffic. Without background traffic, 

detection of attacks is trivial (every event is an attack). Background traffic is 



 

 

thus essential to the problem: since the vast majority of the traffic in an 

organization is benign, even a small share of false alerts will be significant 

in absolute numbers and cause a problem for the system administrator [22]. 

Two main alternatives are available to produce background traffic: 

recording from real networks or simulating synthetic events [23]. 

Recordings from real networks have the advantage of providing realism. 

However, there are a number of problems associated with using real data for 

research [23]. First, it is non-trivial to obtain permission to inject attacks in 

real operational systems since they can cause disturbances. Second, 

confidentiality constraints make it difficult to share the data within the 

research community, and thus difficult to the requirement of repeatability 

associated with the scientific process. Third, there is no guarantee that the 

recorded background traffic is free from malicious acts that an IDS should 

raise an alert for. In addition, for the type of test performed in this paper a 

fourth problem exists. Since the test aims to investigate how vulnerability 

scanners can improve the precision and recall of an IDS it is of essence that 

the monitored systems actually contain a considerable number of exploitable 

vulnerabilities. Thus, a real environment with questionable security 

management is needed – but as per the third requirement, it must 

nevertheless be free from attacks not inserted by the researcher. 

Simulated synthetic events and simulated traffic is free from these problems. 

However, it offers no guarantee of being realistically close to any particular 

environment and is therefore problematic to make generalizations from. In 

this test, background data was produced synthetically by producing events 

through the software applications installed on the client machines. To 

provide more realism, the events were produced based on recordings made 

in real systems.  

The events were produced with scripts implemented in Auto IT [24] to 

emulate user actions by using installed applications to send emails to each 

other, surf websites in the environment, open emails/attachments and access 

files on local machines. 

In order to produce a realistic behavioral pattern, the emulated users 

performed these behaviors according to a predefined instruction list created 

based on the actions of real users in an office environment. The instruction 

list was produced by collecting the historic usage of web browsers, desktop 

applications and the outgoing emails of 17 individuals in three organizations 

(two research organizations and one game developer). To enable a variety of 

user behavior the historic records (covering months to years of computer 

usage) were split into one-week instruction sets, which allowed thousands of 

instruction lists (i.e. “users”) to be created. Since the real users’ usage of 

desktop applications (e.g., the websites they visited) lacked meaning in the 



 

 

isolated environment of this test, the user agents employed in this test 

translated each website, user and file into something meaningful in the test 

environment. For instance, a query made on www.google.com was 

interpreted as query made on www.boogle.ex, the search engine of the 

fictive test environment that returns a result meaningful in this environment. 

Thus, the activities performed by the scripted user agents followed the same 

sequence and had the same intensity as real users do during a work week. 

However, the content of mail, files and websites they accessed are unlikely 

to be representative of the content the real users accessed. Also, the scripted 

users did only perform standard behavior of users – more sporadic tasks like 

installation of custom software applications or administrative tasks were not 

performed in this test. 

4.3 Selection of an attack scenario and injection of attacks 

In this test two independent teams attacked the computer networks in order 

to find secret keys hidden in them. One team consisted of security 

researchers from the Swedish Defence Research Agency, the other team 

consisted of security specialists from the Swedish Armed Forces Network 

and Telecommunications Unit. Both teams restricted themselves to using 

only publicly available tools and publicly known exploits, e.g., the tools and 

exploits packed with the operating system Backtrack 5. 

The attacks started at noon a Tuesday and continued until noon a Thursday. 

The attackers had no prior knowledge about which machines the secret keys 

were hidden in, but were told that they were in some of the nine monitored 

networks. As a result, a mix of reconnaissance and penetration activities was 

conducted. According to their own activity logs the two teams conducted 

278 penetration attempts and network scans (or other reconnaissance related 

activates) aimed at the network monitored in this test. These penetration 

attempts led to the compromise of 98 machines. 

During the test, a system administrator monitored the status of the systems 

and the intrusion detection alerts in real time. When this administrator saw 

obvious and loud intrusions he responded and tried to revoke the access 

credentials obtained. As a result, some attacks are similar to each other as 

the attackers then tried to regain the revoked credentials. 

4.4 Configuration of detection sensors 

Nine networks were monitored in this test. In these networks, all traffic was 

monitored using Snort 2.9.0.5 running a snapshot of the full rule set dated 

March 8, 2011. 

Snort was configured with the default rule set to ignore alerts of priority 0 

(“None”) and priority 4 (“No priority”). In addition, the following rules 

were ignored because of the numerous false alerts they produced in the test 



 

 

environment: SID 129-4 on incorrect timestamps in packets, SID 129-12 

triggered by small packets, SID 399 on unreachable hosts and SID 3218 on 

machines trying to connect to a server using Microsoft RPC DCOM.  

During the time period of this test, a total of 624,218 alerts were generated 

by Snort. The analysis and comparison to attack logs show a somewhat 

stochastic behavior where the same type of action by the attackers generated 

different responses from Snort (occasionally no response at all). One 

possible cause of this stochastic behavior is dropped packets due to 

performance problems. While this is possible, the stochastic behavior seems 

uncorrelated to periods of high network load. Also, the hardware used in 

this test is well above the recommended minimum. At most the sensors 

received 3.5 Gigabit per hour (on average 1 Mbit/s), while [25] states “A 

very rough and conservative rule of thumb is that Snort running on a single 

CPU can examine 200Mbits/sec of traffic without dropping an appreciable 

number of packets”. Thus, it appears unlikely that capacity problems caused 

the stochastic behavior and more likely that other factors (e.g., features of 

the attackers’ actions) did. 

4.5 Encoding events and  alerts 

To assess the impact of the filters, the number of detected attacks and the 

number of false alerts were assessed. From these, the precision (fraction of 

alerts that are due to an attack) and the recall (fraction of attacks that are 

detected) were derived. 

Logs manually created by the attacking teams were used to identify attacks 

and scans produced. These logs were used to mark each recorded alert as 

either correct (i.e., correctly indicating an ongoing attacker’s activity) or 

incorrect (i.e., unrelated to attackers’ activities) post hoc. All other alerts 

were treated as incorrect, i.e., false positives. Thus, only those actions that 

the attackers regarded as attacks were seen as real attacks. This is obviously 

a crude interpretation, although it is difficult to identify a better alternative. 

Comparisons between screen recordings from the attackers computers does 

for instance show that they did not regard use of compromised machines as 

an attack in itself and they seldom regarded browsing public services or 

sending PING request to public services as attacks. 

The recorded alert was coded as correct true positives if it was seen as 

plausible that an operator receiving the alert would understand that the 

corresponding attack was ongoing. This means, for instance, that alerts 

related to PING-requests and overlapping TCP packets that followed the 

normal pattern and intensity were considered false positives even though 

they may stem from the attackers actions. 



 

 

4.6 Analysis of effectiveness 

Three of the filters are based on detailed information concerning the 

monitored computer network. More precisely, they require: network 

address, open ports/services, installed software products and security 

vulnerabilities. Internal and external network addresses was retrieved from 

configuration files used to deploy the machines. The other information was 

gathered using authenticated network scans with Nexpose. To our 

knowledge, the performance of Nexpose when it comes to true positives and 

false negatives is comparably good [26]. 

Intrusion alerts, attackers’ logs and vulnerability information was structured 

in a relational database. The filters were tested by querying the database 

post-hoc and counting: total number of alerts that remained, alerts marked 

as correct and the unique number of attacks detected (an attack can raise 

multiple alert). From these the information theoretic metrics precision and 

recall and the F1-measure were calculated. Precision represent the 

probability that an alert is raised because of an attack, recall represent the 

probability that an attack raises an alert at all, and the F1-measure 

aggregates these as the harmonic mean of precision and recall. 

5 Results 

As shown in Table 3, all filters result in a decreased recall (portion of 

detected attacker actions) in comparison to the baseline with no filter.  

As one would expect, less restrictive filters, like filter 2 which only require 

the existence of a vulnerability in the targeted host or 7a which requires that 

ports mentioned in the alert are open, reduce the recall the least. However, 

the ones that maintain highest recall (i.e. filters 2, 6, 7a and 8a) still produce 

a large number of alerts and a large portion of false positives. The large 

portion of false positives can be seen by the low precision they result in. 

They all produce lower a lower precision than the baseline. Thus, they tend 

to filter out a larger portion of true positives than false positives. 

As Figure 3 illustrates, no filter performs strictly better that the baseline in 

terms of precision and recall, but several filters perform strictly worse (i.e., 

with both precision and recall that is lower than the baseline). The only filter 

leading to a considerable improvement in precision (to 2.9% from 1.4%) is 

filter 1, based on the owner of IP-addresses in the alerts. However, while 

this filter doubles the precision it reduces the recall by almost half. 

Several of these filters are combinations of other filters, as Table 2 shows. 

In addition, the CVSS-severity score is an aggregate of filters 4, 5 and 6. 

These relationships explain why several filters produce identical results. For 

instance, filter number 4 and 5 produce the same results because all 



 

 

machines with vulnerabilities of CVSS-severity seven and above also have 

vulnerabilities that can be exploited over a network. 

These poor results lead to the question if other combinations of filters could 

possibly yield better precision and recall. Thus, after the test other 

meaningful combinations of filters were sought. Two types of combinations 

were seen as theoretically sound, i.e., they were believed to reflect the 

decision model and actions of attackers. First, it was considered possible 

that the aggregation of Authentication, Access complexity and Access vector 

made by the CVSS did not reflect the attractiveness of the vulnerability to 

attackers. Filters with an AND-combination of these three and all pairwise 

AND-combinations of them were tested. All these AND-combinations 

perform as filters 4 and 5. The OR-combination of Authentication, Access 

complexity and Access vector was also tested¸ based on the idea that a 

permissive state in any of these would attract an attacker. This OR-

combination had a recall as almost high as when no filter is used, but a poor 

precision (0.7%). Another combination that seemed promising was to 

require filter 1 in combination with the other filters, i.e., to always require 

that and external host is involved in the alarm. However, none of these 

seventeen combinations produced a higher precision than filter 1 alone, but 

all produced a lower recall. Thus, none of these combined filters improves 

the filtering.  

6 Discussion and conclusions 

To offer control and make sure that operational systems were not impacted 

this test was performed in a synthetic environment using a fictitious 

scenario. As a result, there are a number of factors in this test with 

questionable ecological validity (i.e., realistic conditions). Among other 

things, it could be argued that the background traffic was not diverse 

enough, that the targeted networks were unusually small or that the attackers 

and their attacks were overly intense. These factors most probably influence 

the performance of the IDS as measured in this test and it can be argued that 

the performance of the IDS is exaggerated because of unusually beneficial 

conditions. For instance, if attacks would be stretched out over a longer 

period of time, with background traffic intensity remaining the same, it 

would certainly reduce the precision of the IDS. Thus, it is easy to identify 

factors that may have an influence on the efficacy of an IDS and question 

how they were represented in this test. However, for most of these factors it 

appears unlikely that they influenced the relative performance of the filters 

compared to the baseline with no filter. 

In other words, most of the factors that influence the efficacy of an IDS 

ought to have the same (relative) impact on all tested filters. In fact, the only 

factors we can identify that are likely to have an impact on the relative 



 

 

performance of the filters are the vulnerabilities present in the network and 

the attacks performed against the networks. Clearly, the vulnerability based 

filters would perform better if the information on relevant vulnerabilities 

would be more accurate. Thus, if a more competent vulnerability scanner 

was used or intelligence was available on vulnerabilities that attackers tend 

to exploit these filters ought to perform better. Conversely, if attackers 

possess exploits of zero-day vulnerabilities the performance of these filters 

would decrease. While vulnerability information and the attacks used ought 

to influence the results of this test we believe that this scenario, with a 

commonly used vulnerability scanner and publicly known attacks, 

represents a relevant and realistic case. 

When it comes to the practical relevance of this study there are also 

potential issues associated with the encoding and analysis method used. As 

mentioned in section 4.5 the definition of an attack, and consequently a true 

positive, is crude but straightforward. Although most real IDS users 

probably consider some types of attack steps as more important to detect 

than other, no structured attempt was made to rate the importance of 

different actions in the attacker’s log book and take this into consideration 

in the evaluation. For instance, if alerts on penetration attempts are valued 

differently than alerts on reconnaissance (e.g., network scans) the following 

indicates how the filters influence alert quality. Without filter, 42 percent of 

the penetration attempts and 43 percent of the reconnaissance activities 

raised alerts; with filter number 7b or 8b, 24 percent of the penetration 

attempts and 10 percent of the reconnaissance activities raised alerts. Thus, 

the filters are more sensitive to penetration attempts, but the difference is 

not dramatic. 

While the ecological validity of this test can be questioned and a crude 

evaluation method was used, it can be concluded that filters based solely on 

static information about the monitored computer network do not solve the 

problem of false alerts associated with IDSs. With Snort and Nexpose, the 

best filter in terms of precision increased the portion of relevant alerts from 

1.4 percent to 2.9 percent and this came at the cost of reducing the portion 

of detected attacks from above 44 percent to 27 percent. In absolute terms it 

is likely that the results overstate the efficacy of IDS-alternatives because of 

the high attack intensity and standardized background traffic. Still, the best 

filter raised 34 false alerts for every correct alert (2.9% precision) and only 

raised alerts for one attack out of four. Based on results in other fields than 

network security, Axelsson states that a very conservative estimate is that 

more correct than incorrect alerts (i.e., over 50% precision) is required to 

maintain system operator faith in a detection system [22]. The results 

obtained in this test makes it is hard to see how any filter based solely on 



 

 

static information about the computer network can come close to this under 

somewhat realistic conditions. 
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Table 1. Summary of quantitative evaluations of filters. 

Study Information used Data used in 

evaluation 

Result  

[19]  Installed 

software  

 Network 

exposure 

 Vulnerability 

 

Snort alerts from a 

custom made testbed 

of six machines 

exposed to selected 

attacks launched with 

public tools. 

Precision improved from 

12-17% to 92-97%, 

depending on attack.  

[7]  Installed 

software 

 Vulnerability 

 

Snort alerts from the 

dataset described in 

[18]. 

Almost all discarded alerts 

were non-critical (98-

100%), depending on filter. 

The portion of non-critical 

alerts successfully classified 

as non-critical was 15% for 

the simplest filter and 73 % 

if software and vulnerability 

combination was 

considered, 

[12]  Network 

exposure  

 Installed 

software  

 Vulnerability 

 

The Darpa datset and 

their own office 

network. 

The number of alerts is 

reduced with 78% on the 

Darpa set and with 81% on 

their own network. The 

number of true and false 

positives lost is not 

reported. 

[13]  Vulnerability  A scenario with 

“various attacks” 

operating systems 

such as Windows 

2000, Windows 2003 

and Linux Red Hat.  

The rate of “useful alerts” 

increased from 15-42% to 

22-100%, depending on 

protocol. 

[10]  Vulnerability  A testbed with 

operating systems 

such as Windows 

98/200/2003/XP, 

different Linux 

distributions services 

such as FTP and 

Telnet. No 

background traffic, 

but nearly 80% of the 

attacks were not 

matching 

vulnerability. 

After training of the neural 

network the rate of alerts 

targeting an existing 

vulnerability increased from 

20-30% to 90-100% with 

only some small drops in 

true positives (96-100% 

compared to 90-100%). 

 

 

  



 

 

Table 2. Filter, information they use and a textual descriptions of them. 
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Alerts kept if 

1 ●       The alert involves an external host. 

2   ●     The targeted host in the alert has a vulnerability. 

3   ● ● 
 

  
The targeted host in the alert has a vulnerability with CVSS base score of high (above 
7). 

4   ●  ●   The targeted host in the alert has a vulnerability with CVSS access vector  network. 

5   ●   ●  The targeted host in the alert has a vulnerability with CVSS access complexity low. 

6   ●  
 

 ● 
The targeted host in the alert has a vulnerability with where the level of authentication 

needed to exploit is none. 

7a  ●      No port is mentioned in the alert or the alert targets an open port. 

7b  ●      The alert targets an open port. 

8a  ● ●  
 

  
No port is mentioned in the alert or the alert targets an open port where the associated 

software has a vulnerability. 

8b  ● ●     The alert targets an open port where the associated software has a vulnerability. 

9a  ●  ● 
 

  
No port is mentioned in the alert or the alert targets an open port where the associated 

software has a vulnerability with CVSS score of 7.0 or above. 

9b  ●  ● 
 

  
The alert targets an open port where the associated software has a vulnerability with 

CVSS score of high (above 7). 

10a  ●   ●   
No port is mentioned in the alert or the alert targets an open port where the associated 
software has a vulnerability with access vector of network. 

10b  ●   ●   
The alert targets an open port where the associated software has a vulnerability with 

access vector of network. 

11a  ●   
 

●  
No port is mentioned in the alert or the alert targets an open port where the associated 

software has a vulnerability with access complexity low. 

11b  ●   
 

●  
The alert targets an open port where the associated software has a vulnerability with 
access complexity low. 

12a  ●   
 

 ● 
No port is mentioned in the alert or the alert targets an open port where the associated 

software has a vulnerability where the level of authentication needed to exploit is none. 

12b  ●   
 

 ● 
The alert targets an open port where the associated software has a vulnerability where 

the level of authentication needed to exploit is none. 

 

 

  



 

 

Table 3. Performance of the filters.  

Filter Number 

of alerts 

True 

positives 

Attacks 

detected 

Precision  Recall  F1-

measure 

Baseline 624 218 8 819 123 1.4% 44.2% 2.7% 

1 288 390 8 313 74 2.9% 26.6% 5.2% 

2 502 162 4 137 116 0.8% 41.7% 1.6% 

3 256 821 2 779 90 1.1% 32.4% 2.1% 

4 17 678 158 8 0.9% 2.9% 1.4% 

5 17 678 158 8 0.9% 2.9% 1.4% 

6 479 636 3 475 114 0.7% 41.0% 1.4% 

7a 569 548 6 807 108 1.2% 38.9% 2.3% 

7b 40 407 777 48 1.9% 17.3% 3.5% 

8a 569 548 6 807 108 1.2% 38.9% 2.3% 

8b 40 407 777 48 1.9% 17.3% 3.5% 

9a 227 718 1 550 77 0.7% 27.7% 1.3% 

9b 22 849 398 29 1.7% 10.4% 3.0% 

10a 228 040 764 45 0.3% 16.2% 0.7% 

10b 17 678 158 8 0.9% 2.9% 1.4% 

11a 228 040 764 45 0.3% 16.2% 0.7% 

11b 17 678 158 8 0.9% 2.9% 1.4% 

12a 425814 1 615 87 0.4% 31.3% 0.7% 

12b 23209 399 29 1.7% 10.4% 3.0% 

 

 


