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ABSTRACT  

Many theories and tools in the cyber security domain are difficult to test with data from operational 

environments. First, the sensitivity of data makes asset owners wary of letting researchers collect the data 

the need from their systems. Second, since the ground truth is partly unknown in operational environments, 

data collected in “the wild” cannot be easily used to test situational awareness aspects. For example, tests of 

theories related to system vulnerability and intrusion detection are difficult to test. The difficulty of 

performing empirical tests with operational data and the lack of experimental tools hampers research in the 

cyber security domain. Empirical tests of vulnerability assessments methods are rare and intrusion detection 

accuracy is typically tested using the datasets produced by DARPA in the late 1990’s, despite that this 

dataset is outdated and was known to have serious validity issues already in the early 2000’s.  

The advent of cyber ranges is a potential solution to this problem. In cyber ranges, modern virtualization 

technology can be used to simulate cyber environments under controlled conditions. As cyber ranges make it 

possible to control the ground truth, they allow experimentation and observation of variables and processes 

related to cyber security. For instance, by simulating the usage patterns and of an operational environment 

and injecting attacks under controlled conditions, it is straightforward to test if a visualization solution 

increases the situational awareness of decision makers. This paper describes how CRATE, the cyber range 

of the Swedish Defence Research Agency (FOI), has been used and will be used to test hypotheses and tools 

related to security assessments and situational awareness in the cyber security domain.  Examples of 

previous experimental setups are provided and challenges related to research using cyber ranges are 

discussed.  

1.0 INTRODUCTION 

The increasing importance of cyber security, in both military and civil contexts, increases the need for 

knowledge about various issues in the cyber security domain. One important issue cyber situational 

awareness. However, research within cyber situational awareness is still immature. A recent review of cyber 

security research on situational awareness by Franke and Brynielsson [1] found that much of the research 

that has been published on situational awareness is entirely conceptual – more than half of the situational 

awareness papers lack a non-trivial empirical contribution, even with a very inclusive definition of a non-

trivial contribution. Franke and Brynielsson [1] concluded that there seems to be a potential for more 

research with an empirical basis, for example, by using cyber security exercises as a source of empirical data. 

An idea previously presented in [2]. 

This aim of this paper is to further strengthen the arguments for using cyber ranges to support empirical 

studies on cyber situational awareness. Focus is placed on two subtopics of cyber situational awareness: 

system vulnerability assessments and intrusion detection. Both system vulnerability assessments and 

intrusion detection have received considerable attention by the scientific community in recent decades. 

However, as for cyber situational awareness in general, very little empirical support is available for the 

theories and models that have been proposed. This paper argues that it is possible to perform valuable 
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empirical tests of theories related to both vulnerability assessment theories and intrusion detection using 

modern cyber ranges. The evidence for this is primarily empirical: examples of successful empirical research 

carried out in CRATE, the cyber range developed and operated by the Swedish Defence Research Agency 

(FOI).   

The remaining of this paper is structured as follows. Section 2 offers a brief overview of the current state in 

research related to vulnerability assessments and intrusion detection. Section 3 introduces CRATE. Section 4 

presents a number of empirical studies carried out using CRATE. Section 5 discusses future plans for 

situational awareness experiments in CRATE and some general challenges related to experimentation in 

cyber ranges.  

2.0 PREDICTING VULNERABILITY AND INTRUSION DETECTION 

Cyber situational awareness can be seen as a subset or specialization of the model of the situational 

awareness model of Endsley [1]. Endsley’s model [3] states that there are three levels of situational 

awareness: 1) perception of elements in current situation, 2) comprehension of current situation, and 3) 

projection of future status. There are good reasons to think that an interpretation or adaptation of this theory 

is necessary for it to fit for cyber security. For example, because threat agents may purposely reduce a 

humans situational awareness, which is as unlikely scenario in the domains that Endsley’s model originally 

was developed for. Unfortunately, an established interpretation or adaptation of this theory to the cyber 

security domain is yet to be presented. Two issues in cyber security domain that relates to cyber situational 

awareness are vulnerability assessments and intrusion detection. Both these have to do with perceiving 

elements in the current situation, comprehending what these elements mean and making predictions that 

support cyber security related decisions. The more established theories related to these issues are briefly 

presented below.  

2.1 Vulnerability assessments 

To assess and rank a system’s vulnerabilities requires that potential vulnerabilities are identified. One of the 

more established ideas within information/computer/network/cyber security is that security is about 

maintaining or protecting a systems confidentiality, integrity and availability. Consequently, to identify 

vulnerabilities of a cyber-environment is essentially a matter of how adversaries can compromise these 

attributes. Adversaries often exploit errors or flaws introduced in the system to compromise cyber security. 

Because of this, established security models for secure design such as those by Bell-Lapadula [4] and Biba 

[5] are of limited help to identify vulnerabilities. These models as supposed to help a designer construct a 

secure system, and not about making predictions of flaws in systems’ design, implementation or operation. 

In practice, the identification of such errors vulnerabilities is done through analysis of the software code (e.g. 

using static analysis tools and reverse engineering endeavours) or analysis of operational computer networks 

(e.g. through network scans and penetration testing). And, in practice, there are often many vulnerabilities 

that pose a potential threat to cyber security and limited resources to manage them. Thus, the identified 

vulnerabilities need to be prioritized or ranked somehow, e.g. by predicting how severe they are. This can be 

done on different levels of abstraction.  

On a low level of abstraction, the arguably most well-known theory for prioritizing and predicting the 

severity of individual vulnerabilities is the Common Vulnerability Scoring System (CVSS), developed 

within the Forum for Incident Response and Security Teams (FIRST). The latest version of this theory [6] 

posit that a the severity of a vulnerability can be predicted by the attack vector, the attack’s complexity, the 

privileges it requires, if it requires user interaction to be exploited, if the exploits makes it possible to impact 

other “scopes” (e.g. other machines) than the vulnerable one, and if the exploitation leads to loss of 

confidentiality, integrity and/or availability. In addition to describing these relationships, the CVSS comes 

with complex system of equations and constants has been developed to make prediction of the severity level 
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on a continuous scale 0 to 10. No documented rationale has been provided for these equations. A test 

comparing the ratings of the previous version of CVSS to the subjective assessments of experts suggests that 

there is some agreement between experts’ perceptions of severity and the predictions of CVSS [7]. However, 

to this date no published empirical test using data from real systems has assessed the validity of these 

equations (nor the equations of the previous versions of CVSS). 

On a higher level of abstraction, addressing whole networks of computers, attack graphs is an often cited 

theory/model. Attack graphs use information about system privileges and access control policies in a 

computer network to predict how attackers can use one or more vulnerabilities together in order to penetrate 

a computer network [8]. While attack graphs has received considerable attention by scholars (with over 500 

articles indexed by the database Scopus mentioning it the title or abstract), the use of attack graphs to predict 

security is far from an established practice. Furthermore, the only published test on the prediction accuracy 

(further described in section 4) suggests that the practical utility of today’s solutions can be questioned [9].  

CySeMoL [10][11], a more complex theory which use attack graphs as well as other quality-related 

information about the cyber environment to predict vulnerabilities, has only been validated against expert’s 

perception of security. 

General notions of cyber security on an even higher level of abstraction is also mentioned in the literature. 

For example, it is often stated that no system is stronger than its weakest link and that the number of layers of 

security controls indicate the level of security. However, these notions have not been formalized as theories 

or operationalized into something testable, even though some steps has been taken towards this  (e.g. by [12] 

and [13]). Thus, while theories has been proposed for predicting cyber security (or vulnerability), there is no 

theory that has been empirically validated in the sense that it has been shown to predict success or failure to 

attacks. It should be noted that this validation problem is not new or unknown. When Verendel [14] 

reviewed the available methods for quantifying security the lack of empirical support for the proposed 

methods lead to the conclusion that quantified security is a weak hypothesis, and that “for most cases, it is 

unknown if the methods are valid or not in representing operational security.”  

As it largely unknown how security should be assessed it is also unknown how vulnerabilities of a network is 

best visualized or presented to an analyst. Nevertheless, there are several ideas on how this should be done. 

For example, Chu et al. [15] present a tool that visualize attack graphs. 

2.2 Intrusion detection 

Similar to vulnerability assessments of computer systems, intrusion detection in computer systems is an issue 

that has been extensively researched. Literary thousands of papers have been published in scholarly journals 

and workshop or conference proceedings. There is no widely accepted theory on how to detect intrusions or 

how to classify events as intrusions or not, but most researchers agree that there are two basic approaches for 

intrusion detection: one based on modelling benign events and one based on modelling malicious events. 

Models of benign events has attracted considerable attention among researchers and in scholarly research, 

often with the rationale that models of benign behaviours are required to detect novel attacks, e.g. zero-day 

exploits. The idea on models of benign events for intrusion detection was first clearly expressed by Denning 

in 1987 [16]. Denning essentially proposed that metrics and statistics for measuring deviation from normal 

behaviour (e.g. in terms of user sessions) should be used to detect intrusions. While this type of model is 

more frequently addressed in scholarly research, systems used in practice typically use signatures of 

potentially malicious actions  [17]. Thus, most operational intrusion detection systems do not maintain a 

model of how normal behaviour is, but rather maintain a model of how intrusions look like. It is hard to 

distinguish any established theories within the research on any of these models. For example, there is no 

overall agreement concerning the features of what models of normal behaviour should cover to enable 

detection of threatening anomalies.  
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It may seem straightforward to identify the attacks that a model of malicious events will detect, simply by 

looking at the signatures the model looks for. However, in practice, there are similarities between attacks that 

means that a signature may also raise alarms on attacks it was not written for [18]. It is also difficult to 

predict which attacks models of benign behaviour detects, e.g. because the coverage is dependent on 

characteristics of the monitored system is and how the intrusion detection system has been trained. However, 

for both these types of models, the number of false positives is the major issue, and not the portion of attacks 

they can detect. Because most cyber environments produce significantly larger number of benign events than 

malicious events even a low probability that a benign event will be classified as malicious by the intrusion 

detection system will mean that false positives will outnumber the number of true positives [19].  

It is likely that a contributing factor to the issue of false alarms in modern solutions is the lack of data 

available for testing intrusion detection systems. When intrusion detection systems are tested, this is typically 

done using the DARPA-dataset [20] (or a derivate of it). This dataset was synthetically produced in the late 

1990’s, with the type IT-systems used then (e.g. operating systems such as Windows 95), and its validity has 

been questioned for a number of reasons [21] [22]. Thus, while a large number of alternative solutions are 

available for intrusion detection and many ideas have been presented, it is hard to know which solution or 

scheme that is best for different systems and environments. And this uncertainty extends to other theoretical 

issues relating to intrusion detection, such as how to best model attacks in models of malicious events, which 

type of threat intelligence that would support the detection, or which features that models of benign events 

should focus on. 

Finally, in practice, operators are known to have an important role in intrusion detection [23][24]. The high 

portion of false alarms is perhaps the most important reason for this [25]. The operators analyse the alarms 

and correlates it with other information in order to filter out actual threats, prioritize these and carry out 

responses.  A few experiments has been conducted on intrusion detection operators and their performance: 

[26] tested the support of visual and textual tools for intrusion detection, [27] tested an operators ability to 

filter alarms (further described in section 5), [28] tested how the duration of alerts on the screen related to 

detection, [29] tested how knowledge about the own network helps the operator, and [30] tested how 

different types of feedback on operators’ classifications influence future performance. But, of course, much 

is still unknown concerning the work of intrusion detection operators and their situational awareness even 

though a number of experiments has been performed. 

3.0 SYNTHETIC DATA GENERATION IN CRATE 

There exists a large number of cyber ranges and cyber security simulation tools in the world. According to 

[31], the US Air Force alone had 78 simulators for cyber security issues in 2013, and more than 100 such 

simulators were used in the US. There are several attempts to describe state-of-the-art in cyber security 

related simulations (e.g. [32]) and the most significant cyber ranges and simulators available today (e.g. 

[33]). There are also overviews of the tools that can support cyber ranges and cyber security simulations (e.g. 

[34]). This section provides a brief overview of CRATE, a cyber range built and maintained by the Swedish 

Defence Research Agency (FOI). Section 3.1 describes the types of synthetic environments it can be 

instrumented with and section 3.2 describes how events are generated.  

3.1 Synthetic environments 

Physically, CRATE consist of approximately 750 severs, a number of switches and various auxiliary 

equipment (e.g. for remote access). During an experiment these servers are instrumented with between five 

and twenty VirtualBox machines of various types. Instrumentation is straightforward for any type of 

operating system and application software that VirtualBox can handle, but most applications of CRATE use 

a mix of Linux and Windows machines. In addition to the typical enterprise software, simplified versions of 
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social network services, industrial control systems and search engines are available.  

Instrumentation is done through a web based graphical user interface, illustrated in Figure 1. This interface 

allows the experiment designer to manipulate parameters controlling operating system, application software, 

firewall configurations, network topology, users, windows domains, and more. After the design stage, as set 

of scripts will deploy machines that matches the design. While the aim is to have the whole instrumentation 

process fully automated, the experimenter often need to perform some configurations on machines in order 

to make them fit for the experiment at hand. For example, an experimenter may want to change a web 

server’s configuration to make it vulnerable to some attack or plant files in network folders with user 

credentials. This can be done by creating a new virtual machine template with these configurations or by 

interacting with the machine after deployment.  

 

Figure 1: Screenshot of the web-based configuration tool of CRATE (CrateWeb), illustrating the 
virtual machines and network topology of a computer network. 

3.2 Synthetic event generation 

During an experiment, there is typically a need to produce events representing both malicious usage or 

attacks or normal benign system usage.  

For malicious usage, previous experiments in CRATE have relied on manually produced attacks from a set 

of cyber security experts. This fits well with the notion that “cyber-security is science in the presence of 

adversaries” [35] and ensures that are relevant and performed by an intelligent adversary. However, 

involvement of competent cyber security experts is costly and the manual execution of attacks does not 

always ensure the level of control which is desirable during experimentation. For instance, logs produced by 

these attackers typically have a time resolution of minutes while intrusion detection alarms have a resolution 

of seconds or less. Because of this, work has recently started on a tool called SVED (Security 

Vulnerabilities, Exploitation and Detection), which automates of the use of publicly available penetration 

testing tools on systems instantiated in CRATE [36]. The tool will allow experimenters and cyber security 

experts to identify attacks matching the environment in CRATE, plan attacks of any complexity in the form 

of attack graphs, automatically execute these attacks according to the plan, and record the response from 

systems and sensors in CRATE. This will reduce experiment costs, offer higher reliability and offer better 

traceability. Figure 2 shows a screenshot of SVED. 
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Figure 2: Screenshot of SVED, a tool for planning and automating attacks in CRATE. 

Normal, benign, user activity can be produced manually by interacting with the desktop or command prompt 

of machines. But normal user activity can also be generated from scripts. In Linux machines bash commands 

are used to perform actions at predefined occasions; in Windows machines the automation tool AutoIT [37] 

is used to perform actions via components of the graphical user interface. Tools are currently available to 

collect historical user activity from operational systems and use this as a basis for the scripts that automate 

users. As for generation attacks, further development is planned. In particular, there are plans to implement 

the user agents using image recognition and displays exported to the virtual machine host rather than AutoIT. 

This will reduce the scripts’ footprint in the experimental environment and make them appear as real users to 

those in CRATE’s cyber environment.  

4.0 VULNERABILITY ASESSESSMENT AND INTRUSION DETECTION 

EXPERIMENTS IN CRATE 

This section offers some examples of studies related to situational awareness that have been facilitated by 

CRATE. It should be noted that there are other studies, performed using other experimental platforms, that 

are similar to these. For instance, the DARPA Information Assurance and Operational Partners in 

Experimentation Programs  performed similar experiments around year 2000 [38]. This section is limited to 

a subset of research performed using CRATE and presents research on the accuracy of vulnerability scanners 

(section 4.1), host vulnerability metrics (section 4.2) attack graph assessments (section 4.3), intrusion 

detection operators’ filtering capability (section 4.4), and filtering IDS alerts with situational data (section 

4.5). 

4.1 The accuracy of vulnerability scanners 

Many cyber security management tools and solutions assumes or relies upon the availability of information 

concerning publicly known vulnerabilities in the own system. In many cases (e.g. as with attack graph tools 

[39]), it is assumed that this information is provided by vulnerability scanners that probe the systems in the 

network to identify the software and the vulnerabilities that systems have. Thus, the accuracy of vulnerability 
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scanners is important for cyber situational awareness.  

In 2010, domain experts instrumented CRATE with a network representing a small industrial control system 

for an exercise. This network was used to tests seven vulnerability scanners [40] [41]. As the network was 

non-operational and located in a cyber range it was possible to repeatedly run scans on it; as it was well-

documented and available further information gathering it was possible identify the ground truth concerning 

existing vulnerabilities; as it had been created by domain experts it could be assumed that the software and 

vulnerabilities in it was representable for the domain.  

The tests showed, among other things, that the scanners performed better on Window machines than Linux 

machines [40], that they performed significantly better when they are provided user credentials for the 

machines [40], that about half of the publicly known vulnerabilities in a computer network of this sort was 

detected by a scanner [40], and that about two thirds of the vulnerabilities would be remediated if their 

recommendations were followed [41]. 

4.2 Host vulnerability metrics 

In some cases it makes sense to abstract individual software vulnerabilities and assess the vulnerability and 

status of hosts (an operating system and its hosted software). For example, it is common to focus on hosts 

rather than specific software products in cyber security visualization [42]. However, hosts typically have 

multiple products with vulnerabilities of various sorts and severity, which does not fit with visualization of 

hosts. A way to handle this is to score the aggregate vulnerability information to a host level metric that 

represents the overall vulnerability of different hosts.  

Several proposals have been presented in the literature for how such aggregation should be done. The 

estimates produced by these proposals were tested using data collected from the Baltic Cyber Shield, an 

exercise performed in CRATE during 2010 [43]. The time it took for the attackers in the exercise to 

compromise hosts and detailed vulnerability data on these hosts were used to test six hypotheses concerning 

vulnerability rating methods. The results indicated that the more information a method used as input to the 

aggregated value, the more accurate it was. However, the correlation between the rating of the best method 

and the time-to-compromise in the exercise was less than 0.3, suggesting that they offer a weak support for 

gaining situational awareness. 

4.3 Attack graph assessments 

An often cited method for rating host vulnerability, which was not addressed in the study described in 

section 4.2, is attack graphs. Attack graphs fuse vulnerability information with information on their users, the 

users’ privileges in the network, and network access control restrictions (e.g. firewall rules). On a network 

level, attack graphs predict the steps attackers can take in the network by exploiting vulnerabilities to elevate 

their privileges. On a host level they provide information about the privileges that attackers can obtain on 

hosts given starting points. Thus, they can be seen as a more network vulnerability assessment method, or a 

more complex method of assessing host vulnerability (i.e., as the methods in section 4.2). 

The accuracy of a commonly cited attack graph tool was tested in CRATE using experimental data collected 

in 2012 [9]. During this experiment, the Computer Emergency Response Team of the Swedish Armed 

Forces and cyber security researchers at the Swedish Defence Research Agency (FOI) performed a large 

number of attacks to penetrate 199 machines distributed over a number of computer networks. Their 

attempts were logged and subsequently compared to the predictions made by the attack graph tool. The 

predictions by the attack graph tool matched poorly to the performance and choices of the attackers. In fact, 

attackers were more successful at compromising hosts the tool marked as unreachable than they were at 

compromising hosts the tool marked as reachable (29% vs. 8%). In addition, the attack graph tool produced a 
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very complex output, with almost 500 000 attack paths of 60 attacker steps1 or less. Analysis of the 

predictions suggests that this inaccuracy is due to both the inaccuracy of the vulnerability scanner used to 

provide input to the attack graph tool and the assumptions made concerning privileges by the attack graph 

tool.  

4.4 Intrusion detection operators’ filtering capability 

As noted above, most operational systems for detecting attacks depend heavily on the operator who receives 

the alerts. The operator’s performance is important for the intrusion detection capability, and a number of 

human factors can be expected to be of relevance [44]. One of the operator’s primary tasks is to review the 

alerts produced by intrusion detection sensors to separate the alerts that come of real threats from the alerts 

that come of normal benign activity. The ability of an operator in doing so was tested in CRATE during an 

experiment conducted during 2011.  

In the experiment [27], the operator monitored a system he was familiar with using a sensor he had manually 

tuned. The system was attacked by a team from the Computer Emergency Response Team of the Swedish 

Armed Forces and the operator received alerts in real time. Based on these alerts, and other information he 

could collect by interacting with the monitored systems, the operator’s had the task of writing down the 

attacks he believed took place. This log and the output of the tuned intrusion detection sensor was 

subsequently compared to the log of the attackers. This comparison showed that the operator did a good job 

at filtering out the actual attacks. The intrusion detection system sensor raised alerts for 69% of the attacks, 

but only 11% of the alerts could be traced to actions taken by the attackers. The intrusion detection operator 

raised an alert for 58% of the attacks, and 57% of these alerts could be traced to actions taken by the 

attackers. Interviews with the operator suggested that the most useful information in this task was, other the 

alerts produced by the intrusion detection system, his knowledge about security in general, the network that 

was attacked, and his knowledge about the attackers in the experiment.   

4.5 Filtering IDS alerts with situational data 

Intrusion detection system operators typically fuse alert information with other information about the 

monitored network, something that is exemplified by the results described in section 4.4. Automating this 

data fusion task would certainly be desirable. To investigate how this should be done, a test was carried out 

using the data from 2012 which is described in section 4.3. This test examined whether accuracy could be 

improved if alerts were correlated with information provided by a vulnerability scanner [17]. In other words, 

if filters based on computer system information (e.g. vulnerabilities, vulnerabilities properties and open 

ports) could help reduce false alarms, but at the same time maintain most of the true alerts. Unfortunately, 

none of the 18 tested filters, nor any of combination of them, were effective. The most effective filter 

managed to nearly reduce the number of false alarms by half, but at the cost of also reducing the number true 

alerts by half. One possible interpretation of this is that better vulnerability information is needed than what 

today’s vulnerability scanners have to offer; another possible interpretation is that more advanced data fusion 

is required; a third possible interpretation is that this task is difficult to automate and should be left to a 

human operator; and a fourth possible interpretation is that the experiment must have been unrealistic and 

lack ecological validity.  

5. DISCUSSION AND FUTURE WORK 

In the cyber security domain, a number of conceptual analyses has been performed of cyber situational 

awareness, e.g. [45]. However, despite the large interest for the topic, no comprehensive and well-formulated 

theories on situational awareness have been developed yet. Such a theory could, for example, adapt the 

theory of Endsley [3] and explain which properties of a system an intrusion detection system or intrusion 

                                                      
1 An example step is running the exploit MS08-067 (CVE-2008-4250) against the SMB service on a Windows XP system. 
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detection operator will need to comprehend in order to accurately predict which assets that are compromised 

or will be compromised in the immediate future. Good ideas already exists on both what needs to be 

perceived, comprehended, and projected in cyber security management. For example, interviews and 

observations of intrusion detection system operators and administrators indicate that it is important to keep 

track of the vulnerabilities in the network, the normal behaviour of machines in the network and the current 

behaviour of machines [23][24][27]. It is reasonable to assume that this information will be useful for 

making decisions of relevance to cyber security. These decisions can, for example, be the of the types that 

cyber security operations centers make concerning interventions for ongoing attacks: blocking activity, 

deactivating user accounts, and informing some other party [46]. Or, it can be the types of decisions 

mentioned in cyber security incident handling guidelines. For example, NIST’s incident handling guidelines 

[47] stresses the need to prioritise incidents and explains that decisions related to containment strategies 

needs to be made.  

Thus, while both established practice and reasonable ideas exists on cyber security situational awareness, a 

comprehensive theory or model over how various variables fit together is missing. One possible reason for 

why comprehensive theories on cyber situational awareness is missing is that cyber security researchers, 

historically, have had a hard time obtaining relevant data. Because, without data to test theories, theory 

generation is of little value to science. Cyber ranges like CRATE makes it possible to perform controlled 

experiments on a wide range of issues related to cyber security, including issues related to situational 

awareness. Thus, they may help cyber security researchers to develop useful and comprehensive theories on 

cyber situational awareness that, after rigorous testing, can become widely accepted. CRATE will be further 

developed to facilitate realistic training and tests of cyber situational awareness, in particular by improving 

the generation of background data and automating the execution of attack tools.   
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