

A framework and theory for
cyber security assessments

Teodor Sommestad

2012

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Industrial Information and Control Systems

KTH, Royal Institute of Technology

Stockholm, Sweden

TRITA-EE 2012:043

ISSN 1653-5146

ISRN KTH/ICS/R—12/03—SE

ISBN 978-91-7501-511-8

Stockholm 2012, Universitetsservice US AB

I

Abstract
Information technology (IT) is critical and valuable to our

society. An important type of IT system is Supervisor Control

And Data Acquisition (SCADA) systems. These systems are

used to control and monitor physical industrial processes like

electrical power supply, water supply and railroad transport.

Since our society is heavily dependent on these industrial

processes we are also dependent on the behavior of our SCADA

systems. SCADA systems have become (and continue to be)

integrated with other IT systems they are thereby becoming

increasingly vulnerable to cyber threats. Decision makers need to

assess the security that a SCADA system’s architecture offers in

order to make informed decisions concerning its

appropriateness. However, data collection costs often restrict

how much information that can be collected about the SCADA

system’s architecture and it is difficult for a decision maker to

know how important different variables are or what their value

mean for the SCADA system’s security.

The contribution of this thesis is a modeling framework and a

theory to support cyber security vulnerability assessments. It has

a particular focus on SCADA systems. The thesis is a composite

of six papers. Paper A describes a template stating how

probabilistic relational models can be used to connect

architecture models with cyber security theory. Papers B through

E contribute with theory on operational security. More precisely,

they contribute with theory on: discovery of software

vulnerabilities (paper B), remote arbitrary code exploits (paper

C), intrusion detection (paper D) and denial-of-service attacks

(paper E). Paper F describes how the contribution of paper A is

combined with the contributions of papers B through E and

other operationalized cyber security theory. The result is a

decision support tool called the Cyber Security Modeling

Language (CySeMoL). This tool produces a vulnerability

assessment for a system based on an architecture model of it.

Keywords: cyber security, security assessment, vulnerability

assessment, architecture modeling, enterprise architecture.

II

Sammanfattning
Informationsteknik (IT) är kritiskt och värdefullt för vårt

samhälle. En viktig typ av IT-system är de styrsystem som ofta

kallas SCADA-system (från engelskans ”Supervisor Control And

Data Acquisition”). Dessa system styr och övervakar fysiska

industriella processer så som kraftförsörjning, vattenförsörjning

och järnvägstransport. Eftersom vårt samhälle är beroende av

dessa industriella processer så är vi också beroende av våra

SCADA-systems beteende. SCADA-system har blivit (och

fortsätter bli) integrerade med andra IT system och blir därmed

mer sårbara för cyberhot. Beslutsfattare behöver utvärdera

säkerheten som en systemarkitektur erbjuder för att kunna fatta

informerade beslut rörande dess lämplighet. Men

datainsamlingskostnader begränsar ofta hur mycket information

som kan samlas in om ett SCADA-systems arkitektur och det är

svårt för en beslutsfattare att veta hur viktiga olika variabler är

eller vad deras värden betyder för SCADA-systemets säkerhet.

Bidraget i denna avhandling är ett modelleringsramverk och en

teori för att stödja cybersäkerhetsutvärderingar. Det har ett

särskilt focus på SCADA-system. Avhandlingen är av

sammanläggningstyp och består av sex artiklar. Artikel A

beskriver en mall för hur probabilistiska relationsmodeller kan

användas för att koppla samman cybersäkerhetsteori med

arkitekturmodeller. Artikel B till E bidrar med teori inom

operationell säkerhet. Mer exakt, de bidrar med teori angående:

upptäckt av mjukvarusårbarheter (artikel B), fjärrexekvering av

godtycklig kod (artikel C), intrångsdetektering (artikel D) och

attacker mot tillgänglighet (artikel E). Artikel F beskriver hur

bidraget i artikel A kombineras med bidragen i artikel B till E

och annan operationell cybersäkerhetsteori. Resultatet är ett

beslutsstödsverktyg kallat Cyber Security Modeling Language

(CySeMoL). Beslutsstödsverktyget producerar

sårbarhetsutvärdering för ett system baserat på en

arkitekturmodell av det.

Nyckelord: cybersäkerhet, säkerhetsvärdering,

sårbarhetsvärdering, arkitekturmodellering.

III

Preface
When my research on this topic began in early 2007 the

American cyber security regulation NERC CIP was a buzzword,

and electrical power utilities in my surroundings began to

become aware of the cyber security issues related to their

SCADA systems. During my first years of working with cyber

security of SCADA systems I often ended up in discussions

concerning the relevance of the topic with those who owned the

problem, i.e., asset owners and SCADA system suppliers. These

discussions were on aspects such as: if there were a threat at all,

why cyber attacks would be used instead of dynamite and what a

cyber attack against a SCADA system possibly could accomplish.

Now, at the finalization of this thesis, the computer worm (or

“cyber weapon”) Stuxnet still gets headlines in prominent

magazines and papers, even though it was discovered more than

two years ago. During the past two years, my discussions with

problem-owners have focused on finding and describing

solutions, and not on debating whether there is a problem worth

considering. I sincerely hope that this thesis, along with the other

outputs produced during my PhD studies (e.g., the tool

supporting applications of these theories), will help to make our

SCADA systems more secure.

As is customary in the Swedish system, this thesis is divided into

two parts. The first part summarizes and gives an overview of

the second part. In the second part the actual contributions are

presented. The actual contributions are six of the papers

produced during my doctoral studies. These six papers all

contribute to the problem of assessing the cyber security of a

system. The first paper presents a template which can be used to

express security theory so that it can be directly applied on a

system model. Papers two through five present theories on the

topic and paper six presents a software tool that combines the

formalism and the theory in order to support cyber security

vulnerability assessments.

It is difficult to produce an exhaustive list of all those who have

helped, contributed, and supported me during this journey. In

addition to my colleagues at the department and paper co-

IV

authors (especially Hannes Holm), I would like to thank

associate professor Mathias Ekstedt, professor Pontus Johnson,

and professor Lars Nordström for their guidance. I would also

like to give a special thanks to Judith Westerlund and my wife

Caroline for their support and encouragement. Finally, I would

like to thank all the security experts who have contributed to my

research projects.

Teodor Sommestad

V

List of included papers
Paper A: T. Sommestad, M. Ekstedt, and P. Johnson, “A

probabilistic relational model for security risk analysis,” Computers

& Security, vol. 29, no. 6, pp. 659-679, 2010.

Paper B: T. Sommestad, H. Holm, and M. Ekstedt, “Effort

estimates for vulnerability discovery projects,” in Proceedings of the

45th Hawaii International Conference on System Sciences, pp. 5564-

5573, 2012.

Paper C: T. Sommestad, H. Holm, and M. Ekstedt, “Estimates

of success rates of remote arbitrary code execution attacks,”

Information Management & Computer Security, vol. 20, no. 2, pp. 107-

122, 2012.

Paper D: T. Sommestad, H. Holm, M. Ekstedt, and N. Honeth,

“Quantifying the effectiveness of intrusion detection systems in

operation through domain experts,” Submitted.

Paper E: T. Sommestad, H. Holm, and M. Ekstedt, “Estimates

of success rates of Denial-of-Service attacks,” in Proceedings of

IEEE 10th International Conference on Trust, Security and Privacy in

Computing and Communications, pp. 21-28, 2011.

Paper F: T. Sommestad, M. Ekstedt, and H. Holm, “The Cyber

Security Modeling Language: A Tool for Vulnerability

Assessments of Enterprise System Architectures,” IEEE

Systems Journal, Accepted for publication.

Contribution in the included papers: In all papers (A-F)

Teodor Sommestad has been the leading researcher and primary

author. In paper A Mathias Ekstedt and Pontus Johnson assisted

with problem definition and authoring. In papers B-E Hannes

Holm had an active role in the research and did approximately a

third of the authoring. Mathias Ekstedt contributed to papers B-

E in terms of authoring and advice on method selection and

survey design. Nicholas Honeth contributed to the authoring

and survey design in paper D. Mathias Ekstedt contributed to

paper F in terms of the overall idea and authoring. Hannes Holm

contributed to paper F with a case study.

VI

Publications not included in

the thesis
Publication I: P. Johnson, E. Johansson, T. Sommestad, and J.

Ullberg, “A tool for enterprise architecture analysis,” in

Proceedings of Enterprise Distributed Object Computing Conference, 2007,

pp. 142–142.

Publication II: M. Ekstedt, P. Johnson, M. Gammelgård, T.

Sommestad, and P. Gustafsson, “Setting the Business Goals,” in

Enterprise Architcture: models and analyses for information systems decision

making, Sweden: Studentlitteratur AB, 2007.

Publication III: P. Johnson, M. Ekstedt, R. Lagerström, and T.

Sommestad, “Introduction,” in Enterprise Architcture: models and

analyses for information systems decision making, Sweden:

Studentlitteratur AB, 2007.

Publication IV: U. Franke, T. Sommestad, M. Ekstedt, and P.

Johnson, “Defense Graphs and Enterprise Architecture for

Information Assurance Analysis,” in Proceedings of the 26th Army

Science Conference, 2008.

Publication V: T. Sommestad, M. Ekstedt, and P. Johnson,

“Combining Defense Graphs and Enterprise Architecture

Models for Security Analysis,” in Proceedings of 2008 12th

International IEEE Enterprise Distributed Object Computing Conference,

2008.

Publication VI: E. Johansson, T. Sommestad, and M. Ekstedt,

“Security Isssues For SCADA Systems within Power

Distribution,” in Proceedings of Nordic Distribution and Asset

Management Conference (NORDAC), 2008.

Publication VII: Y. Xiaofeng, T. Sommestad, C. Fung, and P.

C. K. Hung, “Emergency Response Framework for Aviation

XML Services on MANET,” in Proceedings of The IEEE

International Conference on Web Services (ICWS), 2008.

Publication VIII: U. Franke, J. Ullberg, T. Sommestad, R.

Lagerström, and P. Johnson, “Decision support oriented

VII

Enterprise Architecture metamodel management using

classification trees,” in 2009 13th Enterprise Distributed Object

Computing Conference Workshops, 2009.

Publication IX: E. Johansson, T. Sommestad, and M. Ekstedt,

“Issues of Cyber Security In Scada-Systems-on the Importance

of Awareness,” in Proceedings of the 20th International Conference on

Electricity Distribution (CIRED), 2009.

Publication X: P. Närman, T. Sommestad, S. Sandgren, and M.

Ekstedt, “A framework for assessing the cost of IT

investments,” in PICMET 2009 Proceedings, 2009.

Publication XI: T. Sommestad, M. Ekstedt, and L. Nordstrom,

“Modeling Security of Power Communication Systems Using

Defense Graphs and Influence Diagrams,” IEEE Transactions on

Power Delivery, vol. 24, no. 4, pp. 1801-1808, 2009.

Publication XII: S. Buckl, U. Franke, O. Holschke, F. Matthes,

C.M. Schweda, T. Sommestad, and J. Ullberg, “A Pattern-based

Approach to Quantitative Enterprise Architecture Analysis,” in

Proceedings of 15th Americas Conference on Information Systems

(AMCIS), 2009.

Publication XIII: M. Ekstedt, U. Franke, P. Johnson, R.

Lagerström, T. Sommestad, J. Ullberg, and M. Buschle, “A Tool

for Enterprise Architecture Analysis of Maintainability,” in

Proceedings of the 2009 European Conference on Software Maintenance

and Reengineering, 2009.

Publication XIV: W. R. Flores, T. Sommestad, P. Johnson, and

M. Simonsson, “Indicators predicting similarities in maturity

between processes: An empirical Analysis with 35 European

organizations,” in Proceedings of 1st Annual Pre-ICIS Workshop on

Accounting Information Systems, 2009.

Publication XV: T. Sommestad, M. Ekstedt, and P. Johnson,

“Cyber Security Risks Assessment with Bayesian Defense

Graphs and Architectural Models,” in Proceedings of Hawaii

International Conference on System Sciences, 2009.

VIII

Publication XVI: M. Ekstedt and T. Sommestad, “Enterprise

Architecture Models for Cyber Security Analysis,” in Proceedings of

IEEE PES Power Systems Conference & Exhibition (PSCE), 2009.

Publication XVII: M. Buschle, J. Ullberg, U. Franke, R.

Lagerström, and T. Sommestad, “A Tool for Enterprise

Architecture Analysis using the PRM formalism,” in CAiSE2010

Forum PostProceedings, 2010.

Publication XVIII: M. Buschle, J. Ullberg, U. Franke, R.

Lagerström, and T. Sommestad, “A Tool for Enterprise

Architecture Analysis using the PRM formalism,” in Proceedings of

CAiSE Forum 2010, 2010.

Publication XIX: T. Sommestad, G. Björkman, M. Ekstedt, and

L. Nordström, “Information system architectures in electrical

distribution utilities,” in Proceedings of NORDAC, 2010.

Publication XX: G. Björkman, T. Sommestad, M. Ekstedt, H.

Hadeli, Z. Kun, and M. Chenine, SCADA system architectures.

Stockholm, Sweden: Report of The VIKING project, 2010.

Publication XXI: F. Löf, J. Stomberg, T. Sommestad, M.

Ekstedt, J. Hallberg, and J. Bengtsson, “An Approach to

Network Security Assessment based on Probabilistic Relational

Models,” in First Workshop on Secure Control Systems (SCS-1), 2010.

Publication XXII: T. Sommestad, M. Ekstedt, and L.

Nordström, “A case study applying the Cyber Security Modeling

Language,” in Proceeding of CIGRE (International Council on Large

Electric Systems), 2010.

Publication XXIII: T. Sommestad, G. Ericsson, and J.

Nordlander, “SCADA System Cyber Security – A Comparison

of Standards,” in Proceedings of IEEE PES General Meeting, 2010.

Publication XXIV: T. Sommestad and J. Lillieskold,

“Development of an effort estimation model – a case study on

delivery projects at a leading IT provider within the electric

utility industry,” International Journal of Services Technology and

Management, vol. 13, no. 1/2, p. 152, 2010.

IX

Publication XXV: H. Holm, T. Sommestad, J. Almroth, M.

Persson, "A quantitative evaluation of vulnerability scanning",

Information Management & Computer Security, vol. 19, no. 4, pp. 231-

247, 2011.

Publication XXVI: T. Sommestad, Exploiting network configuration

mistakes: practitioners self-assessed success rate. Stockholm, Sweden:

TRITA-EE 2011:069, 2011.

Publication XXVII: T. Sommestad, H. Holm, and M. Ekstedt,

Threats and vulnerabilities, final report. Stockholm, Sweden: Report

of The VIKING project, 2011.

Publication XXVIII: H. Holm, T. Sommestad, and M. Ekstedt

Vulnerability assessment of SCADA systems. Stockholm, Sweden:

Report of The VIKING project, 2011

Publication XXIX: T. Sommestad, Password authentication attacks:

a survey of attacks and when they will succeed. Stockholm, Sweden:

TRITA-EE 2011:067, 2011.

Publication XXX: H. Holm, T. Sommestad, U. Franke, M.

Ekstedt, “Expert Assessment on the Probability of Successful

Remote Code Execution Attacks,” in Proceedings of WOSIS 2011 -

Proceedings of the 8th International Workshop on Security in Information

Systems, In conjunction with ICEIS 2011, Beijing, China, 49-58, 2011

Publication XXXI: T. Sommestad and J. Hallberg, “Cyber

security exercises as a platform for cyber security experiments,”

in TAMSEC, 2011, p. 33.

Publication XXXII: W. Flores, T. Sommestad, and H. Holm,

“Assessing Future Value of Investments in Security-Related IT

Governance Control Objectives – Surveying IT Professionals,”

The Electronic Journal of Information Systems Evaluation, vol. 14, no. 2,

pp. 216-227, 2011.

Publication XXXIII: H. Holm, T. Sommestad, U. Franke, and

M. Ekstedt, “Success rate of remote code execution attacks –

expert assessments and observations,” Journal of Universal

Computer Science, vol. 18, no. 6, pp. 732-749, 2012.

X

Publication XXXIV: T. Sommestad and A. Hunstad,

“Intrusion detection and the role of the system administrator,”

in Proceedings of International Symposium on Human Aspects of

Information Security & Assurance, 2012.

Publication XXXV: T. Sommestad and J. Hallberg, “Cyber

security exercises and competitions as a platform for cyber

security experiments,” in Proceedings of the 17th Nordic Conference on

Secure IT Systems, 2012.

XI

Table of contents
Part one: Summary ... 1

1 Introduction .. 2

1.1 Outline of the thesis .. 2

1.2 Background ... 2

1.3 Objectives ... 5

2 Related works ... 6

2.1 Metrication frameworks and methods 7

2.2 Operationalized cyber security theory 9

2.3 Operationalized cyber security assessment methods 12

3 Result and contribution .. 13

3.1 Means of representation ... 14

3.2 Constructs ... 17

3.3 Statements of relationship .. 18

3.4 Scope ... 20

3.5 Causal explanations ... 22

3.6 Testable propositions .. 22

3.7 Prescriptive statements ... 25

4 Research design .. 26

4.1 Framework and formalism ... 26

4.2 Qualitative theory .. 27

4.3 Quantitative theory .. 28

4.4 Validation .. 30

5 References ... 32

XII

Part two: Papers ... 43

Paper A: A probabilistic relational model for security risk analysis 44

Paper B: Effort estimates for vulnerability discovery projects 93

Paper C: Estimates of success rates of remote arbitrary code execution

attacks .. 117

Paper D: Quantifying the effectiveness of intrusion detection systems in

operation through domain experts .. 141

Paper E: Estimates of success rates of denial-of-service attacks 176

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures 200

XIII

Part one: Summary

1

Part one:
Summary

Part one: Summary

2

1 Introduction
This introduction describes the thesis’ outline, the background

of the research and the objectives of the research.

1.1 Outline of the thesis

This thesis is divided into two parts. Part one (this part) presents

an overview and part two presents a summary to the actual

contribution.

The remainder of section 1 in this part of the thesis gives a

description of the background and objectives of the research.

Section 2 describes related works and relates this to the

contribution of this thesis. Section 3 summarizes the

contribution of this thesis by presenting properties of the theory

presented in it. Section 4 describes the research design.

The second part of the thesis contains six papers labeled papers

A through F. Two of these papers have been published in the

proceedings of international conferences, three have been

accepted or published in international journals, and one is

currently under review for publication at an international journal.

The papers contain the same content as when they were

published/accepted/submitted, only their typesetting has been

changed.

1.2 Background

Information technology (IT) is critical and valuable to our

society. IT systems support business processes by storing,

processing, and communicating critical and sensitive business

data. In addition, IT systems are often used to control and

monitor physical industrial processes. For example, our electrical

power supply, water supply and railroads are controlled by IT

systems. These “controlling” systems have many names. In this

thesis they are referred to as SCADA (Supervisory Control And

Data Acquisition) systems, or occasionally, as industrial control

systems. They are complex real-time systems that include

components like databases, application servers, web interfaces,

human machine interfaces, dedicated communication equipment,

Part one: Summary

3

process control logic, and numerous sensors and actuators that

measure and control the state of the industrial process. In many

industrial processes (e.g., electrical power transmission) these

components are also distributed over a large geographical area.

SCADA systems can be seen as the nervous system of industrial

processes [1] and since our society is heavily dependent on the

industrial processes that SCADA systems manage, we are also

dependent on the behavior of our SCADA systems.

Over the last two decades our SCADA systems and their

environments have changed. They used to be built on

proprietary and specialized protocols and platforms [2]. Today,

however, SCADA systems operate on top of common and

widely used operating systems (e.g., Windows XP) and use

protocols that are standardized and publicly available (e.g., IEC

60870-5-104). These changes have altered the threat

environment for SCADA systems.

The move to more well-known and open solutions lowers the

threshold for attackers who seek to exploit vulnerabilities in

these SCADA systems. Vulnerabilities are regularly found in the

software components used in SCADA systems (e.g., the

operating systems) and instructions that can be used to exploit

these vulnerabilities are often made available in the public

domain. The increased openness also lowers the thresholds for

attacks targeting special-purpose SCADA components, e.g.,

programmable logic controllers (PLCs). Today there is an

interest in the vulnerabilities they have and there is information

available in the public domain about their design and internal

components. In fact, it is even possible to buy a subscription to

exploit code specifically targeting SCADA systems’ components

(see for example [3]). In other words, a successful cyber attack

against a SCADA system today does not require the SCADA-

expertise that was required prior to the move to more open,

standardized and common components.

In parallel with the move to more common and widely known

solutions, SCADA systems have moved from being isolated and

standalone to be interwoven in the larger IT environment of

enterprises. Process data collected by SCADA systems,

production plans, and facility drawings are often exchanged over

enterprises’ computer networks [4]. It is also common to allow

Part one: Summary

4

users to remotely connect to operator interfaces, for instance, so

that process-operators can connect remotely when they are on

standby duty and so that suppliers are able to perform

maintenance remotely [4].

The increased integration with more administrative enterprise

systems has also contributed to a changed threat environment.

Administrative systems are, with few exceptions, connected

(directly or indirectly) to the internet. Hence, the possibility for

administrative systems to exchange data with SCADA systems is

also a possibility for attackers or malware to come in contact

with these systems and exploit their vulnerabilities, without

physical proximity.

The lowered threshold to find and use SCADA-related

vulnerabilities and tighter integration with enterprise systems are

two cyber security problems that add to the volume of cyber

security issues related to architecture and configuration of the

actual SCADA systems [5–7]. Historically, SCADA systems were

built to be reliable and available, but not to be secure against

attacks with a malicious intent.

SCADA systems are thus critical assets, have exploitable

vulnerabilities, and are interwoven into the enterprise

architectures. Decision makers who wish to manage their cyber

security need to be able to assess the vulnerabilities associated

with different solution architectures. However, assessing the

cyber security of an enterprise environment is difficult. The

budget allocated for cyber security assessments is usually limited.

This prohibits assessments from covering and investigating all

factors that could be of importance. The set of variables that

should be investigated, and how important they are, is also hazy

and partly unknown. For instance, guidelines such as [8–11] do

not prioritize their cyber security recommendations. Such

prioritizations are also difficult to do in a generic guideline since

the importance of many variables are contingent on the systems

architecture and environment and guidelines are limited to one

or few typical architectures. Variables are also dependent on each

other. An attack against a SCADA system may be performed in a

number of ways and can involve a series of steps where different

vulnerabilities are exploited. Thus, some combinations of

vulnerabilities can make an attack easy, but a slightly different

Part one: Summary

5

combination may make attacks extremely difficult. Thus,

informed decisions require an analysis of the vulnerabilities

associated with different architectural scenarios, and at the same

time, an analysis of how these vulnerabilities relate to each

other.

These problems are not unique for SCADA systems. Many

administrative IT systems also have complex environments;

administrative IT systems often need to be analyzed on a high

level of abstraction; the importance of different variables is hazy

also for administrative IT systems. Like the administrative

environment, the SCADA environment consists of software,

hardware, humans, and management processes. And as

described above, there is a substantial overlap between the

components which are used in both environments today.

However, there is a difference in what needs to be protected in

these environments. Security is often thought of as a triage of

confidentiality, integrity and availability. For SCADA systems,

integrity and availability of functionality are crucial, but

confidentiality of business data is not [9]. Because of this, cyber

security assessments of SCADA systems have a different focus

than for many other systems. The importance of availability and

integrity has also other implications. For instance, because of the

consequence of a potential malfunction, it is recommended that

SCADA systems should not be updated before extensive testing,

and network based vulnerability scanners should be used with

care in SCADA environments [9].

1.3 Objectives

The overall aim of this research is to develop support for those

conducting cyber security assessments. More precisely, the

objective is to: Develop a tool that makes cyber security theory easy to use

for decision makers. To reach this objective the two sub-objectives

were identified:

(1) Define a formalism that makes it possible to apply a cyber
security theory on system architecture specifications and

(2) Compile and develop cyber security theory that is relevant for
decision makers in the SCADA domain.

The purpose of this research is thus to help decision makers to

assess the cyber security of IT systems with different

Part one: Summary

6

architectures. Help is needed to assesses both existing systems

“as-is” and potential future “to-be” systems. Focus is on

supporting decision makers in the SCADA domain. As

presented above (cf. section 1.2) such support must tackle

practical issues. First, cyber security assessment cannot be overly

costly to perform, viz. all details concerning the SCADA

system’s architecture and configuration cannot be investigated.

Second, the theory on what makes a system secure is, is not

always clear (especially when details about the system are

missing) and in approximations are necessary. Both these

practical issues make assessments uncertain and to support a

decision maker, trade-offs are needed with respect to accuracy.

The aim is to produce a reasonable tradeoff between accuracy

and the cost of collecting system specific data while

communicating the uncertainty of the result.

2 Related works
The contribution of this thesis follows ideas of the management

approach called enterprise architecture. Enterprise architecture is

an approach for holistic management of information systems

where diagrammatic descriptions of systems and their

environment are central. A number of established enterprise

architecture frameworks exist, including: The Open Group

Architecture Framework [12], the Ministry of Defence

Architecture Framework [13] and the Department of Defense

Architecture Framework [14]. The research presented in this

thesis follows the ideas presented in [15], [16] concerning

enterprise architecture modeling and decision making. The

overall idea is that the concepts represented in (enterprise)

architecture models should be there because they, according to

theory, are needed to answer questions of interest to the decision

maker that uses the architecture for some specific purpose.

This thesis focuses on questions related to cyber security and

how to answer those questions with the support of architectural

models of systems. While established some enterprise

architecture frameworks do address security explicitly, the

analysis support they offer is sparse. For instance, in the process

suggested by The Open Group Architecture Framework [12]

includes steps where one should “Identify potential/likely

Part one: Summary

7

avenues of attack” and “Determine what can go wrong?”,

however, it is up to the user of the method (the architect) to do

so. Similarly, the support offered by the Ministry of Defence

Architecture Framework is to document the result of a security

assessment, not to support the analysis required to do it. As

described in [17]: “the aim of this guidance for representing

security considerations is to enable sufficient information to be

recorded for interested parties”.

The thesis describes a framework for connecting system

architecture models to cyber security assessment (paper A),

theory to aid such assessments (papers B-E) and the

combination of these into a model that can be described as an

expert system (paper F). The three sections below are intended

to provide an overview of related work in the directions of the

included papers. More elaborate descriptions can be found in the

corresponding papers.

Section 2.1 describes methods and models for cyber security

assessments. These methods and models require operationalized

cyber security theory or system-specific cyber security data (e.g.,

mean-time to compromise data) to be able to operate. Work on

operationalized theory is described in section 2.2. Section 2.3

describes methods and tools that use operationalized cyber

security theory to help decision makers assess cyber security.

2.1 Metrication frameworks and

methods

A number of ideas can be found on how cyber security should

be assessed. Some ideas concern how security measurements

should be defined and operationalized. Examples include the

ISO/IEC standard 27000-4 [18] and NIST’s security metric

guide [19]. These publications describe how an organization

should develop and maintain a measurement program, but do

not define the actual measurements that should be made or what

different measurement values mean in terms of security. In

addition to these there are general qualitative models that

describe variables (or concepts) in the security domain and how

these concepts relate to each other. CORAS contains a

metamodel over the security field to support assessments made

Part one: Summary

8

using the CORAS method [20], Common Criteria has a

conceptual model over variables (or concepts) a security

assessment needs to consider [21] and several similar qualitative

models are available. For instance, [22–29] are generic

alternatives and [30], [31] are alternatives with a particular focus

on SCADA systems that control energy systems. These methods,

security metamodels, conceptual models and technical reference

models can support cyber security assessments and be used to

define operational cyber security metrics. However, they require

a substantial mental effort from their user – the user must

identify what to measure and how important this is for the IT

system’s cyber security.

To ease this burden, articles published in scientific forums on

security measurement often describe methods to combine

security-variables into one metric. Broadly speaking, they define

which cyber security variables that should be operationalized and

how they should be combined. Examples include: attack trees

[32], threat trees[33], defense trees [34], attack and protection

trees [35], Boolean Logic Driven Markov Processes [36], the

CORAS method [20], XMASS [37], ISRAM [38], NIST’s risk

assessment framework [39], the economic framework given in

[40] and Secure Tropos [41]. Some metrication methods have

also been proposed specifically for SCADA systems (e.g., [42–

44]).

These metrication methods describe how their variables should

be combined to produce a meaningful result. They can thus help

to combine cyber security values of single systems to a value for

a system-of-systems (e.g., the expected monetary loss next year

due to attacks). However, they all require that cyber security

theory is supplied by the user. In some cases both qualitative and

quantitative theory is needed. For instance, the actual trees

together with their attack success probabilities are needed for

defense trees [34] and the attacker’s process model together with

time-to-compromise data is required for Boolean Logic Driven

Markov Processes [36]. In some metrication methods the

qualitative theory is complete and the user is only required to

supply the system architecture and quantitative theory. One

example is the model of Breu et al. [45] which requires threat

realization probabilities, but describes which threat realization

Part one: Summary

9

probabilities that are needed and how they should be combined

for the modeled enterprise system. Another example is XMASS

[37], which among other things requires that the modeler can

acquire or specify “security profiles” for entities. With these

security profiles a user can calculate an ordinal “security value”

(between 0 and 100) for the components in the system.

Paper A describes a framework that can be used to tie security

theory to architecture metamodels. Just as the model of Breu et

al. [45] and XMASS [37] it can be used to infer the security

properties that needs to be quantified from the system

architecture. Like XMASS the framework described in paper A

makes it possible to store security theory so that security can be

assessed without employing security expertise to quantify

security properties. Unlike XMASS the framework in paper A

stores theory expressed in with concepts directly corresponding

to states and events in the real world (e.g., attacks’ success given

use of certain countermeasures), and the framework produces

output that are expressed in tangible units (e.g., expected

monetary losses).

2.2 Operationalized cyber security

theory

The metrication methods described in section 2.1 needs to be

complemented with quantitative cyber security theory to be of

practical use. This theory can be supplied together with the

metrication method or supplied by the user of the method. The

accuracy of the result when the method is applied will of course

be contingent on the accuracy of the theory with which it is

used. Many prominent research results have been produced on

operational cyber security. Some are also specifically addressing

the cyber security of SCADA systems (e.g., the demonstrations,

assessments and tests described in [46–50]). Unfortunately only a

small portion of these could be used in analyses of the types

dealt with in this thesis. This section aims at giving an overview

of available theory that has been used as a basis for this research

and to point to gaps which are filled by papers B-E. More

elaborate descriptions of studies related to the contributions in

papers B-E can be found in the papers included in part two of

this thesis.

Part one: Summary

10

Some areas of cyber security have an intrinsic quantitative

element which makes metrication and estimation of the required

effort to accomplish an attack straightforward [51]. In particular,

established methods are available for assessing the strength of

cryptographic methods and authentication methods (e.g.,

password authentication) under well specified conditions [51]. In

other fields, empirical investigations have approximated the

probability that the attacker would succeed with different attacks

on the level of abstraction manageable in an enterprise security

assessment (considering the cost of collecting data). For

example, studies on social engineering attacks have produced

success frequencies under different conditions [52–55]. Other

studies have assessed the frequency of configuration mistakes in

enterprises’ systems and how difficult such mistakes are to

exploit [56], [57]. Results described in these papers make up a

subset of the theory used in the model of paper F.

With respect to software vulnerabilities there is empirical data

available concerning public disclosed software vulnerabilities in

databases like [58], [59]. In these, and in databases like [60], it is

also possible to identify the vulnerabilities for which exploit code

is publicly available. Models have been developed to predict how

many cyber security vulnerabilities that will be publicly disclosed

for a product [61–64]. For instance, the number of vulnerabilities

found in a software product has been found to correlate to the

number of user-months the product has accumulated and the

time it has been on the market [62]. The effectiveness of

different procedures for deploying security patches has also been

assessed [65]. When it comes to development of new exploits it

is reasonable to assume that this is a straightforward task for a

professional penetration tester when patch information is

available for the vulnerability. For instance, it is demonstrated in

[66] that exploit development can be automated for selected

classes of vulnerabilities under those circumstances. However, to

predict how difficult it would be for an attacker to find a zero-

day vulnerability (i.e., a vulnerability discovered by someone, but

which is still unknown to the public and the system owner) in a

software product and develop an exploit for it is more difficult.

In [67] it is estimated how many zero day vulnerabilities there

have been at different points in time during recent years.

However, since data on the effort invested in the discovery

Part one: Summary

11

projects identifying these vulnerabilities (or those projects that

failed to identify a software vulnerability) is unavailable [61], it is

difficult to deduce the required effort for finding a new

vulnerability from the archival records available. Paper B

contributes to this with effort estimates for discovery projects

undertaken given different conditions.

Several studies have investigated the exploitation of software

vulnerabilities, in particular the type of exploitation where a

remote attacker obtains control of the vulnerable system. In [68–

82] attacks and defenses are described. While these publications

describe countermeasures and attacks they mitigate, no study has

been found that states how common different conditions and

attack forms are, i.e., how often an intelligent attacker will or can

employ each of the attack forms studied. Because of this, these

studies could not be applied directly to this work. Paper C

contributes to this with success rates under different conditions.

Intrusion detection systems monitor systems and aim at

identifying attacks made against them. A number of empirical

studies have been performed on the probability of attacks being

detected and false alarms being produced by these systems (e.g.

[83], [84]) and on the impact of different parameters’ impact (e.g.

[85–87]). However, testing intrusion detection systems in a way

that makes the result generalizable to real systems is difficult

[88–91]. Studies on intrusion detection systems are also technical

and focus on the property of the system alone. In practice,

however, it is a tool used by an administrator who monitors its

output [92–95] and judges if the alarms are worth reacting upon.

A first attempt to assess detection rates when administrators are

monitoring the output of the intrusion detection system is

described in [96]. While the result of [96] clearly shows the

importance of considering system administrators, it is too

narrow to offer generic data on intrusion detection systems’

effectiveness. Paper D contributes to this with broad and general

estimates on how an administrator using an intrusion detection

system will perform given different conditions.

Work has also been performed on the denial of service attacks.

Examples of experiments, observations and simulations on

denial of service attacks and related countermeasures can be

found in [97–103]. However, since these studies are made under

Part one: Summary

12

different assumptions it is difficult to generalize from their

results and translate them into a real-world context. Broader

reviews in the denial-of-service field [104–108] are also of a

qualitative nature. Paper E makes a quantitative contribution in

this field and describes approximate success rates under various

conditions.

2.3 Operationalized cyber security

assessment methods

A number of research efforts prior to the one presented in this

thesis operationalize a security assessment method so that

decision makers only need to describe their systems in order to

obtain the assessment of their enterprise architecture. In other

words, there are other assessment methods where the user only

needs to input information about the system architecture (and

not operationalized security theory). Instead of requiring theory

from the user, these assessment methods assign values for

security properties (such as time-to-compromise or attack

success probability) for the system architecture based on a

generic theory.

Research efforts along these lines have in recent years focused

on methods that use attack graphs. These methods aim at

resolving which attacks can be made against a system

architecture. Since potential attacks are the source of cyber

security risk, these methods match decision making processes

concerning cyber security. The approach were threats and attacks

are modeled could be compared to methods that check

compliance to a set of standardized security requirements for

SCADA systems (e.g., [109], [110]) instead of indicating the

vulnerabilities that different solutions have.

Methods based on attack graphs are based on a model over the

system architecture and a database of exploits or security

vulnerabilities [111], [112]. With this data, an algorithm calculates

privileges and network states that can be reached by an attacker

starting from a certain position [111]. Since the early variants of

attack graphs (like [113], [114]) several tools have been

developed with different solutions to the problem. Differences

can be seen both in terms of the data they require as input and

Part one: Summary

13

the output they produce when they are applied. The most mature

tools described in the literature are: NetSPA [115], [116], the

TVA-tool [117–119] and MulVAL [120].

The operationalized security assessment method presented in

this thesis is called CySeMoL (Cyber Security Modeling

Language) and is described in paper F. Its conceptual model is

similar to that of attack graphs, and like attack graphs it

instantiates ways that an attacker can compromise the modeled

system. The abstraction level of CySeMoL’s analysis is higher

than the abstraction level used in attack graph methods like

NetSPA, TVA-tool and MulVAL. In particular, CySeMoL does

not model individual instance of software vulnerabilities or

individual exploits. On the other hand CySeMoL includes more

types of entities in the analysis. For example, CySeMoL includes

human users and management processes in the analysis.

CySeMoL proposes solutions to some issues with implemented

attack graph methods. In particular:

 Unlike NetSPA, CySeMoL does not assume that all
vulnerabilities are exploitable on all machines,
regardless of configuration.

 Unlike MulVAL, CySeMoL gives arguments for the
validity of quantitative data on how difficult it is to
exploit a vulnerability.

 Unlike MulVAL and NetSPA, CySeMoL does not rely
on the output of vulnerability scanners (which miss
many vulnerabilities [121]) to be practically usable.

 Unlike TVA tool, CySeMoL does not require that the
user of the model enters exactly which exploits the
attacker can use.

 Unlike MulVAL and TVAtool, CySeMoL can assess
attacks against client software.

 Unlike these three tools, CySeMoL covers more attack
types than exploitation of software vulnerabilities.

The relationship to other operationalized security assessments

methods are also described in paper F.

3 Result and contribution
The primary result of this research is a probabilistic relational

model containing cyber security theory. This probabilistic

Part one: Summary

14

relational model and the theory contained in it are henceforth

referred to collectively as CySeMoL (Cyber Security Modeling

Language). CySeMoL describes how attack steps and

countermeasures relate to each other and how they can be used

to assess the cyber security of an IT system architecture.

To use CySeMoL, the user supplies an object model complying

with CySeMoL’s metamodel, states the initial privilege of the

attacker and states which attack step the attacker will try to reach

(i.e., where the attack will end). With this input CySeMoL can

suggest paths the attacker would take and estimate the

probability of the attacker succeeding, given that he/she has

tried. CySeMoL is thus a theory developed to support cyber

security vulnerability assessment. Below, CySeMoL is described

using the seven structural components of theories outlined in

[122]:

 means of representation

 constructs

 statements of relationships

 scope

 causal explanations

 testable propositions

 prescriptive statements

Each of these theory components is described in a separate

subsection below.

3.1 Means of representation

A theory needs to be represented physically in some way [122].

The theory in this thesis is represented through a probabilistic

relational model. More specifically, it is represented through a

probabilistic relational model complying with the template

described in paper A.

A probabilistic relational model (PRM) [123] specifies how a

Bayesian network [124] should be constructed from an object

model (instance model). In other words, it states how a Bayesian

network should be created from a model that instantiates a class

diagram (metamodel), such as the one of UML (Unified

Modeling Language) [125]. A Bayesian network (sometimes

called “causal network” [124]) is a graphical representation of

Part one: Summary

15

probabilistic dependencies between variables [126]. Hence, a

PRM can codify how probabilistic dependencies between objects

are contingent on the objects’ relationships to each other. As

succinctly expressed in [123], PRMs ”are to Bayesian networks as

relational logic is to propositional logic”.

In a PRM the classes can have attributes and reference slots. The

attributes are random variables with discrete states; the reference

slots point to other classes to state which relationships the class

has with other classes. Attributes in the PRM are associated with

a set of parents. The parents of an attribute A are attributes in

the object model which A’s value depends upon. The association

to an attribute’s parents can be used to express qualitative

theory. For instance, in Figure 1, attribute A1 of class C1

depends on attribute A2 of class C2 if objects of these classes

are related to each other with reference slot R1. How an attribute

depends on its parents is defined using a conditional probability

table. The probabilities P1 and P2 in table of Figure 1 state how

attribute C1.A1 (attribute A1 for objects of class C1) is

determined by the value of C1.R1.A2 (attribute A2 of the object

that R1 points to). Thus, the theory embedded in PRM is

quantified through conditional probabilities.

C1

A1

C2

A2

R1

C1.R1.A2 True False

C1.A1 P1 P2

Figure 1. The PRM formalism.

CySeMoL’s theory is expressed according to the template

depicted in Figure 2. This template is a PRM with abstract

classes (i.e., classes that needs to be further refined to be possible

to be instantiate in an architecture model). It describes abstract

classes that are of relevance to cyber security assessments and

describe how the attributes of these classes depend on each

other. Among other things, it contains five subclasses to the

class Countermeasure and details how these influence the cyber

security risk. For example, a PreventiveCountermeasure influences

Part one: Summary

16

the probability that an AttackStep can be accomplished, while a

ContingencyCountermeasure influences the loss that would be

inflicted on an Asset if a Threat would be realized.

To summarize, both the qualitative and quantitative parts of the

theory are represented through a PRM. An advantage of this

means of representation is the possibility of automatically

applying the theory on a modeled architecture. A PRM

constitutes a formal description for how the value of objects’

attributes should be calculated in an object model. Given that a

system’s architecture is described as an object model, the value

of its attributes can be inferred automatically from the theory of

the PRM. Such inference can also infer values for attributes

which have not been observed, i.e., attributes that do not have a

state assigned.

ReactiveCountermeasure

Functioning

Activated

Asset

Countermeasure

ThreatAgent

DetectiveCountermeasure

ContingencyCountermeasure

ExpectedLoss

AccountabilityCountermeasure

AttackStep

OR

Functioning

PossibleToAccomplish

Functioning

Target

Functioning

Functioning

IsDetected

PreventiveCountermeasure

Functioning

GiveRiseTo

Association

Resources

Threat

PossibleToAccomplish

IsAttempted

Leaves accountability

AND

OR

1..*

1

ExpectedLoss

Owner

ExpectedLoss

SUM

Value

ExpectedLoss

ExpectedLoss

ExpectedLoss

ExpectedLoss

ExpectedLoss

IsRealized

1..*
0..*

0..*

Includes0..*

1

0..*

SupportiveCountermeasure

Functioning

ExpectedLoss

Figure 2. The PRM template used as a framework.

Part one: Summary

17

3.2 Constructs

A number of constructs are used in CySeMoL. These constructs

are specializations of those in the abstract PRM template (cf.

Figure 2). The theory is limited to vulnerability assessments and

does not concretize all construct-types in the template. The

classes Asset, AttackStep, PreventiveCountermeasure,

DetectivCountermeasure and ReactiveCountermeasure are concretized.

One type of ThreatAgent is considered, and the Threat-class is

used but not further concretized.

The theory within CySeMoL is focused on issues concerning

SCADA systems. As mentioned in section 1.2, integrity and

availability of these systems is the primary concern and

confidentiality is not. Also, SCADA systems operate in an

environment where certain elements are commonly present and

others are not. For instance, bank transactions and mobile

phones are not relevant to the typical SCADA system’s cyber

security. Both the concerns of decision makers and the elements

present in SCADA systems’ environments have influenced

which constructs have been included in CySeMoL.

The metamodel of CySeMoL depicts the constructs of the

theory and their relationships to each other. Figure 3 depicts the

constructs in terms of classes, attributes and class-relationships

(reference slots). Note that this figure is on another level of

abstraction than Figure 2, and most attributes in this figure

correspond to classes in Figure 2. For example, the attribute

FindHighSeverityVulnerability in the class SoftwareInstallation in

Figure 3 is a special type of AttackStep (depicted as a class in

Figure 2). This is similar to the metamodel layering of UML and

the relationship between UML and MOF (Meta Object Facility)

[125].

The constructs in CySeMoL have descriptive names. They also

have a more elaborate textual definition. For instance, paper C

defines and describes a number of the attributes related to

arbitrary code exploits. The definitions are intended to be

intuitive and accepted in the community. For example, the

Common Vulnerability Scoring System’s definitions [127] are

used in paper C to define properties of attacks and

vulnerabilities.

Part one: Summary

18

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Data Flow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

PhysicalZone

Access

SoftwareInstallation

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopPatchableExploitForLowSeverityVuln

DevelopPatchableExploitForMediumSeverityVunl

DevelopPatchableExploitForHighSeverityVuln

DevelopUnpatchableExploitForLowSeverityVuln

DevelopUnpatchableExploitForMediumSeverityVunl

DevelopUnpatchableExploitForHighSeverityVuln

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

Service
OperatingSystem

ConnectToFromOtherZone

ExecutionOfArbitaryCodeFromOtherZone

ConnectToFromSameZone

ExecutionOfArbitaryCodeFromSameZone

FloodDoS

SemanticDoS

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

Person
SecurityAwarenessProgram

Account

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAccount

AuthenticationMechanism

PasswordAuthentication

Mechanism

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

UntrustedZone
TrustedZone

AllowedDF

PerimeterIDS

Protocol

Read Write

Medium

PhysicalZone

Product

PhysicalZone

ManagementProcess

AuthenticationMechanism

Owner

AwarenessProgram

HIDS

OperatingSystem

Owner

Zone

VPN Gateway

Server

Client
Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

DeepPacketInspection

DPI

Proxy

ExtractPasswordRepository
BackoffTechnique

ProxyGateway

ExecutionOfArbitaryCodeFromSameZone

ExecutionOfArbitaryCodeFromOtherZone

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicPatchableSeverityVuln

HasPublicPatchableMediumSeverityVuln

HasPublicPatchableHighSeverityVuln

HasPublicUnpatchableLowSeverityVuln

HasPublicUnpatchableMediumSeverityVuln

HasPublicUnpatchableHighSeverityVuln

FindUnknownServiceFromOtherZone

ExecutionOfArbitaryCodeInUnknownServicesFromOtherZone

AccessThroughPortableMedia

AccessTroughUIFromOtherZone

AccessFromOtherZone

FindUnknownServiceFromSameZone

ExecutionOfArbitaryCodeInUnknownServicesFromSameZone

AccessTroughUIFromOtherZone

AccessFromSameZone

ARPspoof

Firewall

Firewall

AccessControlPoint

AccessControl

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

HasAllLowSeverityPatches

HasAllMediumSeverityPatches

HasAllHighSeverityPatches

OperatingSystem

TerminalService

Access

DenialOfService

FindLowSeverityVulnerability

FindMediumSeverityVulnerability

FindHighSeverityVulnerability

Functioning

Functioning

Functioning

StaticARPTables

HostFirewall

LoadBalancing

ServerRoaming

Figure 3. The metamodel of CySeMoL. Countermeasures
associated with a class are listed in the class’ upper plate.
Attack steps associated with a class are listed in the class’
lower plate.

3.3 Statements of relationship

CySeMoL describes a large number of relationships.

Relationships between classes are expressed as reference slots;

relationships between attributes are expressed through slot

Part one: Summary

19

chains and conditional probability tables. Both types of

relationship are directional. The class-relationships (reference

slots) are deterministic while many of the attribute-relationships

are probabilistic and uncertain.

The attribute-relationships are quantified through conditional

probability tables. Just as the constructs are a subset of the

constructs in the abstract PRM template, attribute-relationships

are a subset of the attribute relationships in the abstract PRM

template. This subset is limited to attribute-relationships between

subclasses to: PreventiveCountermeasure and AttackStep,

DetectiveCountermeasure and AttackStep, ReactiveCountermeasures and

AttackStep, AttackStep and AttackStep. The derived relationships

stated in CySeMoL are too many to be described here. Refer to

papers B through F for details. An example drawn from paper C

is presented in Figure 4. In this example, the influence of six

variables is expressed in the conditional probability table. The

dependent variable and variables A-C are subclasses to

AttackStep; variables D-E are subclasses to

PreventiveCountermeasure. If both parent A and parent B are true, a

probabilistic dependency exists. However, if either one of

parents A or B is false, the response variable will be false

regardless of the state of other variables.

Of all entries in CySeMoL’s conditional probability tables, 82

percent are deterministic. In other words, the value is either one

or zero under 82 percent of the conditions. Deterministic

relationships exist when some set of conditions are required for

an attack to be feasible at all (as in the example in Figure 4), or

when a variable is used as an aggregate for some other variable

to simplify the PRM. The remaining 18 percent of the entries in

the conditional probability tables are probabilistic values

reflecting uncertainty about the variables state in this scenario.

When CySeMoL’s theory is applied, it is important to consider

this uncertainty. The theory of CySeMoL is specified on a high

level of abstraction, and the theory will in many cases only offer

a rough approximation.

Part one: Summary

20

The attacker can execute

abitrary code in the

service’s operating system

A
Attacker can connect to the

service

B
The attacker has an exploit

for a high-severity

vulnerability

C
The attacker has user

credentials

D
There is an IPS between the

attacker and service

E
Non-executable memory

protection is used in the

service’s operating system

F
Address Space Layout Rand.

is used in the service’s

operating system

Service.ConnectToFromOtherZone

Service.FindHighSeverityVulnerability

Service.Access

Service.Proxy.Functioning

Service.OperatingSystem.NonExecutableMemory

Service.OperatingSystem.AddressSpaceLayoutRandomization

AND(A,B) T F

C T F …

D T F T F …

E T F T F T F T F …

F T F T F T F T F T F T F T F T F …

TRUE (%) 41 41 31 65 48 59 52 67 15 20 24 32 24 27 33 43 0

Figure 4. Examples of relationships stated in CySeMoL.

3.4 Scope

As described in section 3.2, CySeMoL focuses on constructs and

relationships that concern the cyber security of SCADA system.

This focus influences the relationships that have been included

in CySeMoL. However, the relationships that have been included

in CySeMoL are equally valid for other domains than SCADA.

For instance, the relationships depicted in Figure 4 are general

and could be applied to any type of IT system. The studies used

to define constructs and relationships have not been limited to

the SCADA domain. The theory comes from generic security

literature and the judgment of security experts from a broad

Part one: Summary

21

population. The theory is thus possible to generalize to domains

other than SCADA systems.

However, CySeMoL’s theory is only valid for a specific threat

model. The relationships have been expressed for the case when

the threat agent is a professional penetration tester with access to

publicly available tools and one week to spend on the attack.

Clearly, other threats are also present. For instance, a threat

agent can be the unskilled “script kiddie”, a well-known

computer worm or a group of skilled actors such as a military

cyber command. The threat agent may also have access to

different toolsets and a different amount of time to spend on the

attack. CySeMoL’s theory only covers cases concerning the

professional penetration tester with publicly available tools and

one week to spend.

In addition to delimitations regarding the threat agent the validity

of the theory is contingent on developments in the threat

environment and the cyber security measures employed in

enterprises. Cyber security can be seen as an arms race, where

attackers and defenders continuously improve and change their

practices [128]. Advances on the attacking side will mean that

certain attacks become easier to perform while advances on the

defending side will mean that they are more difficult to perform.

The theory presented in this thesis marginalizes a considerable

number of variables with the assumption that they have the

value they typically have in enterprises today. When advances

are made on the adversarial side with respect to knowledge, skill,

or tools, the estimates will underestimate the capability of

attackers on the attack steps in questions. The estimates are also

contingent on the assumption that marginalized variables related

to enterprises’ cyber security practices are as they are today. So, if

the average values of architecture-related variables outside the

scope of the metamodel change significantly, then the estimates

will become less accurate. While this means that the utility of the

theory will deteriorate over time, maintaining it should possible

if there is a will to do so. For instance, if publicly available tools

include techniques to efficiently bypass the operating system

protection called address space layout randomization, the validity

of relationships where this variable is involved needs to be

revised. Similarly, if there is a general increase in the security of

Part one: Summary

22

software producer’s products using means other than those

included in this theory, other relationships will need to be

revised.

3.5 Causal explanations

The theory in CySeMoL is rich in causal relationships and

explanations. All the relationships stated in CySeMoL are drawn

from hypotheses concerning causality that are described in the

literature. In CySeMoL these are quantified and formally

represented. As described in section 3.3, some relationships are

probabilistic and some are deterministic. The table in Figure 4

gives examples of both. Textual explanations that further explain

the causality are also available. For instance, explanations for the

relationships in Figure 4 can be found in paper C. Paper C (like

the other papers) also contains references to even more elaborate

explanations for why they have a causal influence.

3.6 Testable propositions

An important quality of scientific theory is that it is testable. The

propositions concern the capability of a professional penetration

tester with one week to spend on this task. This threat is

believed to be relevant for decision makers, known well-enough

to make theory-construction possible, and possible to test

formally to an acceptable extent. However, engaging professional

penetration testers in weekly undertakings comes at a cost;

formal empirical tests of the propositions put forward in

CySeMoL in most cases have a considerable cost associated with

them. In fact, the costs and practical obstacles associated with

observational studies are the reason why domain experts are

used to quantify much of the theory.

Performing experimental tests involving sampled professional

penetration testers who spend one week each on an attack is

certainly costly. Archival data on attack attempts from the threat

agents of the type in question would be an option. However,

reliable data of this type is not available today. As a consequence,

encompassing tests on all parts of the proposed theory is likely

to be costly. However, at a reasonable cost, tests can be

performed on selected parts of the theory to test these parts’

Part one: Summary

23

validity, and tests can be performed on a high level of

abstraction on the theory as a whole.

On a low level of abstraction CySeMoL proposes conditional

probabilities for specific attack steps (see Figure 4 for an

example). A full-fledged experimental setup on this level of

abstraction would require a sample of systems where attributes

included in CySeMoL correspond to the prediction to be tested,

and the attributes not included in CySeMoL are distributed in a

way that is representative to those systems used in enterprises

today. It also requires a representative sample of penetration

testers who are willing to spend a week attacking each system

according to a predefined path. Observations can then be made

on success-frequencies for all entries in a conditional probability

table to assess their calibration. A less resource-demanding

approach would be to investigate a few strategically selected

table-entries (probabilities) which CySeMoL predicts. Since the

conditional probabilities in a table often originate from the same

source (e.g., a group of security experts), a test on one entry also

indicates the calibration of other entries. Tests arranged with less

resourceful threat agents can also falsify the theory. For instance,

if less resourceful or less skilled threat agents consistently

perform better than CySeMoL predicts this suggests that

CySeMoL underestimates the success probability.

On a high level of abstraction, CySeMoL proposes attack paths

that have an approximated probability of success. An example is

shown in Figure 5. Also on this level of abstraction a full-fledged

experimental setup would require representative attackers and

sampled system configurations that are representative for an

enterprise environment. Like the tests on specific probability

values, it also requires a representative sample of penetration

testers who are willing to attack each system according to a

predefined path. However, tests can be performed on

strategically selected attack paths, or with less resourceful and/or

competent threat agents. For instance, if threat agents

consistently fail attack paths that CySeMoL predicts as easy but

succeed with attack paths CySeMoL assigns a marginal success-

probability, this would point to validity issues with CySeMoL’s

theory.

Part one: Summary

24

DE 400

DevelopUnpatchableExploitForHighSeverityVuln T=2%

GetBinaryCode T=3%

GetProductInformation T=3%

CheckedWithStaticCodeAnalysis T=NO

HasBeenScrutinized T=NO

OnlyUsesSafeLanguages T=NO

SourceCodeClosed T=YES

BinaryCodeSecret T=NO

Windows 2007

OperatingSystem

AccessFromOtherZone T=YES

Engineering server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Access T=1%

AccessFromOtherZone T=1%

Application server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Engineering database

Service

ConnectToFromOtherZone T=3%

FindHighSeverityVulnerability T=2%

ExecutionOfArbitaryCodeFromOtherZone T=1%

OperatingSystem

Engineering data

Data Flow

ProduceRequest T=3%

IIS

SoftwareProduct

DevelopPatchableExploitForHighSeverityVuln T=33%

ProbeProduct T=33%

Internet

NetworkZone

Internet Perimeter

NetworkInterface

Zone

Office network

NetworkZone

FindUnknownEntryPoint T=33%

ObtainOwnAddress T=33%

UntrustedZone TrustedZone

Web server

Service

ConnectToFromSameZone T=33%

FindHighSeverityVulnerability T=13%

ExecutionOfArbitaryCodeFromSameZone T=3%

OperatingSystem

Office managent procedures

ZoneManagementProcess

RegularLogReviews T=NO

RegularSecurityAudits T=YES

FormalChangeManagentProcess T=NO

AutomatedPatchingProcedures T=NO

ManagementProcess

Access T=3%

AccessFromSameZone T=3%

Client

Product

Server

Control center

NetworkZone

Office to Control center

NetworkInterface
UntrustedZone

TrustedZone

Product

Zone

Allow

1

3

4

8

9

10

11

13

17

19

Cisco

Firewall

Functioning T=46%

Firewall
Firewall

12

12

18

HasAllHighSeverityPatches T=61%

ObtainOwnAddress T=100% 2

BinaryCodeSecret T=NO

HasNoPublicPatchableHighSeverityVuln T=NO

5

6

7

14

16

15

Figure 5. Excerpts from an instance model. A 19-step attack
path and probabilities that each step along this path will be
reached. The order the path is traversed is shown the
enumerated arcs.

Some initial steps have been taken to test and validate the

propositions made in CySeMoL through observations. In [129]

observations related to remote arbitrary code exploits are made

in conjunction with a cyber security exercise, in [96] a formal test

of intrusion detection systems’ operational effectiveness is made

for one scenario and in [130] a formal test is made for one of the

propositions CySeMoL makes regarding signature based

intrusion detection. These tests corroborates propositions put

forward by CySeMoL, however, they only cover a small portion

of the theory and only [96] have the threat agent CySeMoL’s

theory is built around. Yet, they demonstrate the possibility to

arrange formal tests of CySeMoL’s validity.

A broader test of CySeMoL’s convergent validity has been

performed by comparing the predictions produced on a high

level of abstraction to the predictions made by domain experts

concerning a set of system architectures. In the test, the

reasonableness of estimates made by CySeMoL was compared to

the reasonableness of estimates made by five domain experts and

three novices in cyber security. Of the six “experts”, CySeMoL

ends up in fourth place with respect to mean score, and fifth

place with respect to median score. Overall, the test does not

show an alarming difference between its ratings and the real

experts’ ratings. In addition, CySeMoL is rated as more

Part one: Summary

25

reasonable than all the three novices. This test is further

described in paper E.

3.7 Prescriptive statements

The theory of CySeMoL does not prescribe how a decision

maker should go about achieving an optimal cyber security

solution. The primary reason for this is that the theory does not

include a number of variables that are required when the utility

of a solution is to be assessed, including:

a) The consequence of attacks and the influence of
contingency measures on this consequence, for
instance, the cost of an unavailable SCADA server.

b) All threat agents that are relevant for a decision maker,
for instance, insiders within SCADA system suppliers
or undirected malicious code.

c) The mental model of threat agents and how often they
attempt attacks of different types, for instance, how
often they are likely to attempt attacks involving social
engineering.

d) The business value (or cost) associated with different
architectures, for instance, the value of making
historical measurements available to IT systems in
administrative office networks.

The abstract PRM template suggests how theories on a), b), and

c) could be integrated with the theory presented in this thesis.

The output of a theory that encompasses all constructs in the

abstract PRM template could then be contrasted to the output of

methods that assess the business value of an enterprise

architecture, i.e., paragraph d). For instance, the method

described in [131] could be used.

While important variables are outside the scope of the theory,

and CySeMoL cannot be used to produce prescriptive

statements directly, the theory can be used to produce

prescriptive statements when these variables values have been

assessed. The vulnerability estimates produced by CySeMoL can

also be used to produce prescriptive statements ceteris paribus.

Clearly, a less vulnerable architecture is desirable if all other

variables remain unchanged. When perceptive statements are

produced it is important to remember that CySeMoL produces

Part one: Summary

26

rough approximations. It does not produce exact success

probabilities.

4 Research design
This section gives an overview of the methodological aspects

that have guided the research. The description is process-

oriented and each sub-section corresponds to a phase in the

research. These phases are (cf. Figure 6): framework and

formalism, qualitative theory, quantitative theory and validation.

The methods used for data collection and analysis within each of

these phases are described.

Framework & formalism Qualitative theory Quantitative theory Validation

0..*

1..*

1..*

0..* B

C

A

D
P(A | B,C)

P(B | D,E)

P(D | E)
DE 400

DevelopUnpatchableExploitForHighSeverityVuln T=2%

GetBinaryCode T=3%

GetProductInformation T =3%

CheckedWithStaticCodeAnalysis T=NO

HasBeenScrutinized T=NO

OnlyUsesSafeLanguages T=NO

SourceCodeClosed T=YES

BinaryCodeSecret T=NO

Windows 2007

OperatingSystem

AccessFromOtherZone T=YES

Engineering server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Access T=1%

AccessFromOtherZone T=1%

Application server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Engineering database

Service

ConnectToFromOtherZone T=3%

FindHighSeverityVulnerability T=2%

ExecutionOfArbitaryCodeFromOtherZone T =1%

OperatingSystem

Engineering data

Data Flow

ProduceRequest T=3%

IIS

SoftwareProduct

DevelopPatchableExploitForHighSeverityVuln T=33%

ProbeProduct T=33%

Internet

NetworkZone

Internet Perimeter

NetworkInterface

Zone

Office network

NetworkZone

FindUnknownEntryPoint T=33%

ObtainOwnAddress T=33%

UntrustedZone TrustedZone

Web server

Service

ConnectToFromSameZone T=33%

FindHighSeverityVulnerability T=13%

ExecutionOfArbitaryCodeFromSameZone T=3%

OperatingSystem

Office managent procedures

ZoneManagementProcess

RegularLogReviews T=NO

RegularSecurityAudits T=YES

FormalChangeManagentProcess T=NO

AutomatedPatchingProcedures T=NO

ManagementProcess

Access T=3%

AccessFromSameZone T=3%

Client

Product

Server

Control center

NetworkZone

Office to Control center

NetworkInterface UntrustedZone
TrustedZone

Product

Zone

Allow

1

3

4

8

9

10

11

13

17

19

Cisco

Firewall

Functioning T=46%

Firewall
Firewall

12

12

18

HasAllHighSeverityPatches T=61%

ObtainOwnAddress T=100% 2

BinaryCodeSecret T=NO

HasNoPublicPatchableHighSeverityVuln T=NO

5

6

7

14

16

15

E

Papers B-EPaper A Paper F

Figure 6. Phases in the research.

4.1 Framework and formalism

The primary purpose of this research is to support decision

makers when they need to assess the cyber security of their

SCADA systems. While the cyber security issues pertaining to

SCADA systems are fairly new, a substantial theoretical body is

available with the security field as a whole. This research

reviewed existing literature in the field and compared it with the

needs of decision makers in the SCADA domain. A number of

methods and models have been proposed to address the

problem of measuring cyber security, however, none of these

were found to fit the needs in their present state (section 2

explained why).

Literature was the primary information source used when the

framework used in this research was developed. The result

combined qualitative models found in literature with a

mathematical formalism and puts these into a framework which

allows causal cyber security theory to be coupled with

architectural models. As this framework was used as a basis, it

has an influence on the approach used in other parts of this

Part one: Summary

27

research. The framework approaches cyber security assessments

as risk assessments and aims at quantifying the monetary risk

associated with different architectures, i.e., the probability of

unwanted events and the expected consequences of these events.

The framework also directs the theory developer to model the

attacks that give rise to the risk and the influence of

countermeasures that reduce it. The primary sources of

inspiration for this framework are Common Criteria’s and its

conceptual model [21], time-based-security [27], attack-modeling

[32], [113], [114] and monetary security risk assessments [40],

[132]. The formalism used to couple this framework to

architectural models was that of PRMs [123]. The result was the

abstract PRM template described in section 3.1 and paper A.

4.2 Qualitative theory

The framework (or PRM template) was used to develop a

qualitative theory over cyber security. This qualitative theory

details the PRM’s: classes, reference slots, attributes and attribute

relationships. In other words, it details everything except the

conditional probabilities of the PRM.

An extensive literature review and interviews with experts in the

cyber security domain were the primary sources for this theory.

The objective was to produce a qualitative causal theory to

support assessments of cyber security vulnerability. A subset of

the framework was used for this purpose. To efficiently tackle

practical issues relating to cyber security assessments this theory

should offer a good tradeoff between the cost of applying the

theory, the cost of quantifying the theory and the theory’s

accuracy.

First, literature was consulted to identify which attack steps to

include. This literature study included review of a large number

of textbooks (e.g. [133]), standards and reports (e.g. [9]),

overview-articles (e.g. [104]) and security databases (e.g. [134]).

After an initial model over attacks and assets had been created,

literature on specific attacks was consulted. These sources were

used to assess the parents to attack steps, i.e., countermeasures

and states (completed attack steps) that literature suggests have

an important influence on the probability that an attack step

could be accomplished. A large number of sources were used for

Part one: Summary

28

each type of attack. Examples of sources can be found in section

2.2 and in papers B-F.

The qualitative model was subsequently reviewed by domain

experts. These reviews were made both on a high level of

abstraction to ensure that the scope constituted a reasonable

tradeoff and on a low level of abstraction to prioritize specific

countermeasures and operationalize their definitions. Overall,

these experts confirmed the prioritizations that had been made

based on literature, but suggested some minor changes, e.g., to

focus more on attacks on password authentication. For the

reviews on a low level of abstraction, the number of reviewers

used varied with the attack type. For instance, literature on social

engineering was deemed sufficient to prioritize this field, while

the details on remote code exploits was decided after a pilot

study was made and after consulting three domain experts.

Details concerning the expert reviews can be found in papers B-

F.

4.3 Quantitative theory

The qualitative theory describes the relationships that need to be

quantified. A large portion of the relationships could be

quantified from the definition of constructs. An example of such

a definitional relationship is that an attacker must possess an

exploit code if he/she is to exploit a software vulnerability in a

remote service. The relationships that cannot be determined

from the definition of constructs were analyzed as in

“probabilistic causal analysis” [122]. In other words, it was

perceived as difficult to identify and control all variables that

may influence the response variable’s state. Since relevant

variables are missing from the analysis the causal effect becomes

uncertain (and probabilistic). In Bayesian terms, the omitted

variables can be seen as marginalized [124].

Two methods were employed to assess probabilities. When

reliable data could be found in the literature this data was used.

When no reliable approximations could be found, data was

elicited from domain experts.

Searches for data in literature were performed in article indexing

services (e.g., Scopus and Google Scholar). They aimed at

Part one: Summary

29

finding studies that contained data on the relationships specified

in the qualitative theory. To quantify a relationship using

secondary data the study should not only be of sufficient quality,

but the variables studies should also match the variables and

variable-relationships prescribed in the qualitative model. A

number of relationships were possible to quantify using

quantitative data from previous research in the field. Research on

password security ([135–138]), network misconfigurations ([56],

[57]) and social engineering ([52–55]) was directly used to

determine variables’ probability distributions given the

conditions specified.

When the literature review was unable to find the data required it

appeared not to be because the research community had ignored

the relationship in question. The problem was rather that is was

difficult for a researcher to quantify the relationship through

observation in a manner that made the result generalizable. For

instance, testing intrusion detection systems is associated with a

number of issues, such as producing representative attacks and

representative background traffic [88], [90]. In order to produce

a quantitative theory that could approximate these relationships

the judgment of domain experts was used.

Experts in the scientific community were the primary

respondents in these surveys. However, a number of

practitioners were also included. Researchers were identified

from their publications; practitioners were identified based on

peer-recommendation. Web surveys were used as the elicitation

instrument. Since estimation of probability distributions is

known to be problematic [139] care was taken with the

construction of the web survey. The reliability of the question

format was confirmed using Cronbach’s alpha [140], [141] and

all surveys were qualitatively reviewed by members of the target

population.

Research in the field of expert judgment elicitation suggests that

the result is better calibrated when multiple experts are used

[142]. A number of techniques has been suggested for

combining expert judgment, including: equal-weight, consensus

methods [143], [144], the Cochran-Weiss-Shanteau index [145],

self-proclaimed expertise [146], experience [147], certifications

[147], peer-recommendations [147], and Cooke’s classical

Part one: Summary

30

method [148]. There is little research that compares the accuracy

that these methods yield. This research uses the scheme

proposed in Cooke’s classical method [148]. Cooke’s classical

method has been shown to outperform both the best expert in a

group, and the equal-weight combination of all experts’

assessments. It is a performance based method which assigns

weights based on the experts’ ability to answer a set of test

questions (called “seed questions”) in a calibrated (i.e., accurate)

and informative (i.e., precise) way. In the presented research

these questions were constructed from previous research results

in the field in question.

More elaborate descriptions of the elicitation process and the

implementation of Cooke’s classical method are given in papers

B-E.

4.4 Validation

The interviews undertaken during theory development provided

a qualitative validation of the relationships included in the

theory. The surveys described in papers B-E also validated the

prioritizations underlying the theory by asking respondents to

suggest improvements. The few changes suggested by the

respondents were diverse. In addition to this validation,

CySeMoL’s practical utility has been validated in three case

studies, and the reasonableness of its assessments has been

validated with a variant of the Turing test.

The scopes of the three case studies were: (1) the control center

and adjacent environments in one of Sweden’s three largest

electrical power utilities, (2) electrical substations and remote

communication to these owned by one of Sweden’s largest

power system owners and (3) reference architectures for one of

the world’s most commonly used electrical power management

systems. The case studies demonstrated that the theory served as

a usable tool for architecture analysis and pointed to practical

improvements which would increase usability of the software

tool.

A variant of the Turing test was used to test CySeMoL’s validity

[149]. In the classical Turing test a machine shall behave in a way

indistinguishable from humans. These tests are especially useful

Part one: Summary

31

for testing expert systems in situations such as the present –

where the true answers to test cases are unknown (or very costly

to determine), and it cannot be assumed that one particular

domain expert is correct [150]. The test of CySeMoL was similar

to the tests described in [68] and [71] and had two pools of

human experts: one that produced assessments of the same type

as the expert system and one that evaluated the first pool’s

assessments and the expert system’s assessments based on how

reasonable they are. The idea is that the expert system (i.e.,

CySeMoL) should receive ratings for the evaluators that are

similar to the ratings received by the real experts. To test if the

evaluators could recognize expertise, the test also included a pool

of information system experts which were novices in the cyber

security field. These novices’ assessments were evaluated in the

same manner as the assessments made by the experts and

CySeMoL. If the evaluators recognize expertise the novices

should receive comparably low ratings.

The pool of experts that produced assessments of the same type

as CySeMoL consisted of five persons. The pool of cyber

security novices consisted of three persons, and the pool that

rated the assessments reasonableness consisted of two persons.

The sample size prohibits reliable statistical conclusions from

this test. The variation between the evaluators’ scoring of the

solutions suggests that the result should be interpreted with care.

However, the summary statistics indicates that CySeMoL’s

assessments are comparable to those of a domain expert. In

terms of mean score CySeMoL’s comes in a tied fourth place; in

terms of median score CySeMoL is placed on fifth. It also

appears as if the evaluators’ ratings are meaningful – there is a

clear difference between the ratings that novices receive and the

ratings that experts receive.

A more thorough description of the qualitative validation made

on variables and relationships can be found in papers A-E. In

paper F a more thorough description of the validation Turing

test is given.

As described in 3.6, some initial attempts were made to validate

the theory through formal experiments. In [96], [130] two

experiments concerning intrusion detection systems are

described. In [96] a formal test of intrusion detection systems’

Part one: Summary

32

operational effectiveness is made. This test roughly corresponds

to one of the intrusion detection scenarios in CySeMoL. The test

in [96] gave a detection rate of 58 percent, and the value

CySeMoL predicts is 59 percent. In [130] a formal test is made

concerning the possibility to detect zero-day attacks (i.e., new

and novel attacks) with signature based intrusion detection

systems. As predicted by CySeMoL (c.f. paper D) it shows that

signature based systems can detect zero-day attacks. In addition

to these experiments [129] describes less reliable observations

made in conjunction to a cyber security exercise. The

observations concern remote arbitrary code exploits performed

by a different threat agent under tighter time-constraints than

about which the threat agent CySeMoL makes predictions. The

observations made in [129] correspond to two scenarios

predicted in CySeMoL’s theory (one variable in CySeMoL is

unknown for the observations). CySeMoL predicts these two

scenarios to be successful with 43 percent and 67 percent

probability while the observed frequency was 33 percent. Since

the observed threat agent was less resourceful than the one

CySeMoL makes predictions about the lower value offers some

(albeit weak) support for CySeMoL’s theory. Additional testing

and refinement of CySeMoL’s theory is suggested as future

work.

5 References
[1] T. Cegrell, Power system control technology. Cambridge, Great

britain: Prentice hall International, 1986.

[2] J. Andersson, E. Johansson, M. Haglind, and L. Johansson,
“State-of-the-art study of commercial industrial control
systems,” Royal Institute of Technology - KTH, Stockholm,
Sweden, 1997.

[3] GLEG Ltd, “Agora Exploit Pack Developer- SCADA+ pack,”
(website), 2012. [Online]. Available:
http://www.gleg.net/agora_scada.shtml. [Accessed: 20-Jun-
2012].

[4] T. Sommestad, G. Björkman, and M. Ekstedt, “Information
System Architectures in Electrical Distribution Utilities,” in
Proceedings of NORDAC 2010, 2010.

[5] E. Johansson, T. Sommestad, and M. Ekstedt, “Issues of
Cyber Security In Scada-Systems-on the Importance of
Awareness,” in The 20th International Conference on Electricity
Distribution (CIRED), 2009.

Part one: Summary

33

[6] R. Fink, D. Spencer, and R. Wells, “Lessons learned from
cyber security assessments of SCADA and energy management
systems,” US Department of Energy, no. September, 2006.

[7] U.S. Department of Energy, “Common Cyber Security
Vulnerabilities Observed in Control System Assessments by
the INL NSTB Program,” Idaho Falls, 2008.

[8] US Department of Homeland Security, “Catalog of Control
Systems Security: Recommendations for Standards
Developers,” 2008.

[9] K. Stouffer, J. Falco, and K. Kent, “Guide to Industrial
Control Systems (ICS) Security Recommendations of the
National Institute of Standards and Technology,” Nist Special
Publication 800- 82, 2008.

[10] IEC, “TS 62351-1: Power systems management and associated
information exchange Data and communications security, Part
1:Communication network and system security Introduction to
security issues,” Geneva,Switzerland, 2007.

[11] NERC, “NERC CIP 002-009,” 2007.

[12] TOGAF, “The Open Group Architecture Framework
(TOGAF) - version 9.” The Open Group, 2009.

[13] MODAF, “MOD Architecture Framework (MODAF),” 2012.
[Online]. Available: www.modaf.org.uk. [Accessed: 17-Jul-
2012].

[14] Department of Defense Architecture Framework Working
Group, “DoD Architecture Framework, version 1.5,” 2007.

[15] P. Johnson, L. Nordström, and R. Lagerström, “Formalizing
analysis of enterprise architecture,” in Interoperability for
Enterprise Software and Applications Conference, 2006, p. 10.

[16] P. Johnson, R. Lagerström, P. Närman, and M. Simonsson,
“Extended Influence Diagrams for System Quality Analysis,”
Journal of Software, vol. 2, no. 3, pp. 30-42, Sep. 2007.

[17] MODAF, “FAQs: How does MODAF represent security?,”
2008. [Online]. Available:
http://www.mod.uk/NR/rdonlyres/6F2454B0-48A3-4E61-
90A4-
F420CF9F3F1C/0/20090521_MODAF_1_2_FAQs_How_M
ODAF_Can_Reflect_Security_Concerns_V1_0_U.pdf.
[Accessed: 17-Jul-2012].

[18] International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC)., “ISO/IEC
27004: Information technology -- Security techniques --
Information security management -- Measurement.,” 2009.

[19] M. Swanson, N. Bartol, J. Sabato, J. Hash, and Laurie Graffo,
“Security Metrics Guide for Information Technology
Systems,” NIST Special Publications, vol. 800, no. 55, 2003.

[20] M. S. Lund, B. Solhaug, and K. Stolen, Model-driven risk analysis:
the CORAS approach. Springer Verlag, 2011.

Part one: Summary

34

[21] “Common Criteria for Information Technology Security

Evaluation Part 2 : Security functional components September
2007 Revision 2 Foreword,” no. September, pp. 1-324, 2007.

[22] E. Johansson, “Assessment of Enterprise Information
Security–How to make it Credible and efficient,” KTH - The
Royal Insitute of Technology, 2005.

[23] J. Sherwood, A. Clark, and D. Lynas, Enterprise Security
Architecture: A Business-Driven Approach. USA: CMP Books,
2005.

[24] G. Stoneburner, “Underlying Technical Models for
Information Technology Security,” Nist Special Publications 800-
33, Dec. 2001.

[25] A. Anderson, D. Longley, and L. F. Kwok, “Security modelling
for organisations,” in CCS ’94: Proceedings of the 2nd ACM
Conference on Computer and communications security, 1994, pp. 241-
250.

[26] D. Bodeaum, “A conceptual model for computer security risk
analysis,” in Proceedings Computer Security Applications Conference,
1992. ., Eighth Annual, 1992, pp. 56–63.

[27] W. Schwartau, “Time-based security explained: Provable
security models and formulas for the practitioner and vendor,”
Computers & Security, vol. 17, no. 8, pp. 693-714, 1998.

[28] L. Pirzadeh and E. Jonsson, “A Cause and Effect Approach
towards Risk Analysis,” 2011 Third International Workshop on
Security Measurements and Metrics, pp. 80-83, Sep. 2011.

[29] E. Jonsson, “Towards an integrated conceptual model of
security and dependability,” First International Conference on
Availability, Reliability and Security, pp. 646-653, 2006.

[30] M. Beccuti et al., “Quantification of dependencies in electrical
and information infrastructures: The CRUTIAL approach,” in
2009 Fourth International Conference on Critical Infrastructures, 2009,
pp. 1-8.

[31] T. Fleury, H. Khurana, and V. Welch, “Towards a taxonomy
of attacks against energy control systems,” in Critical
Infrastructure Protection II, no. March 2008, Springer US, 2009, p.
71-85.

[32] B. Schneier, “Attack trees: Modeling security threats,” Dr.
Dobb’s Journal, 1999.

[33] M. Howard and D. C. LeBlanc, Writing Secure Code. Redmond,
WA, USA: Microsoft Press, 2002.

[34] S. Bistarelli, F. Fioravanti., and P. Peretti., “Defense trees for
economic evaluation of security investments,” in Proceedings of
the First International Conference on Availability, Reliability and
Security , pp. 416-423, 2006.

[35] K. Edge, R. Raines, M. Grimaila, R. Baldwin, R. Bennington,
and C. Reuter, “The Use of Attack and Protection Trees to
Analyze Security for an Online Banking System,” 2007 40th
Annual Hawaii International Conference on System Sciences
(HICSS’07), p. 144b-144b, Jan. 2007.

Part one: Summary

35

[36] L. Piètre-Cambacédès and M. Bouissou, “Beyond Attack
Trees: Dynamic Security Modeling with Boolean Logic Driven
Markov Processes (BDMP),” 2010 European Dependable
Computing Conference, pp. 199-208, 2010.

[37] J. Hallberg, N. Hallberg, and A. Hunstad, “Crossroads and
XMASS: Framework and method for system it security
assessment,” Linköping, Sweden, 2006.

[38] B. Karabacak and I. Sogukpinar, “ISRAM: information
security risk analysis method,” Computers & Security, vol. 24, no.
2, pp. 147-159, 2005.

[39] G. Stoneburner, A. Goguen, and A. Feringa, “Risk
management guide for information technology systems,” NIST
Special Publication 800-30, 2002.

[40] L. A. Gordon and M. P. Loeb, Managing Cybersecurity Resources:
A Cost-Benefit Analysis, vol. The Mcgraw. New York, NY, USA:
Mcgraw-Hill, 2006.

[41] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp, “A
natural extension of tropos methodology for modelling
security,” in the Proceedings of the Agent Oriented Methodologies
Workshop (OOPSLA 2002), 2002.

[42] C.-W. Ten, C.-C. Liu, and M. Govindarasu, “Vulnerability
Assessment of Cybersecurity for SCADA Systems Using
Attack Trees,” 2007 IEEE Power Engineering Society General
Meeting, vol. 2, pp. 1-8, Jun. 2007.

[43] M. McQueen, W. Boyer, S. McBride, M. Farrar, and Z. Tudor,
“Measurable Control System Security through Ideal Driven
Technical Metrics,” in S4: SCADA Security Scientific Symposium,
2008.

[44] G. Dondossola, F. Garrone, and J. Szanto, “Cyber Risk
Assessment of Power Control Systems – A Metrics weighed by
Attack Experiments,” in Proceedings of IEEE Power and Energy
Society General Meeting, pp. 1-9, 2011.

[45] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin,
“Quantitative Assessment of Enterprise Security System,”
2008 Third International Conference on Availability, Reliability and
Security, pp. 921-928, Mar. 2008.

[46] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in
assessing vulnerabilities in SCADA systems,” in International
Infrastructure Survivability Workshop (IISW’04), 2004.

[47] I. Nai Fovinoa, A. Carcanoa, M. Maseraa, and A. Trombettab,
“An experimental investigation of malware attacks on SCADA
systems,” International Journal of Critical Infrastructure Protection,
vol. 2, no. 4, pp. 139-145, 2009.

[48] G. Dondossola, J. Szanto, M. Masera, and I. N. Fovino,
“Effects of intentional threats to power substation control
systems,” International Journal of Critical Infrastructures, vol. 4, no.
1/2, p. 129, 2008.

[49] N. SCADA and U.S. Department of Energy, “Common Cyber
Security Vulnerabilities Observed in Control System
Assessments by the INL NSTB Program,” Idaho Falls, 2008.

Part one: Summary

36

[50] G. Dondossola, F. Garrone, and J. Szanto, “Assessment of
power control systems communications through testbed
experiments,” in Electricity Distribution - Part 1, 2009. CIRED
2009. 20th International Conference and Exhibition on, 2009, no.
0650, pp. 1-4.

[51] W. Jansen, “Directions in security metrics research,” DIANE
Publishing, Gaithersburg, MD, 2009.

[52] J. R. Jacobs, “Measuring the Effectiveness of the USB Flash
Drive as a Vector for Social Engineering Attacks on
Commercial and Residential Computer Systems,” Embry
Riddle Aeronautical University, 2011.

[53] S. Stasiukonis, “Social engineering, the USB way,” Dark
Reading, vol. 7, 2006.

[54] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer,
“Social phishing,” Communications of the ACM, vol. 50, no. 10,
pp. 94–100, Mar. 2007.

[55] R. Dodge and A. Ferguson, “Using Phishing for User Email
Security Awareness,” in Security and Privacy in Dynamic
Environments, vol. 201, S. Fischer-Hübner, K. Rannenberg, L.
Yngström, and S. Lindskog, Eds. Springer Boston, 2006, pp.
454-459.

[56] T. Sommestad, M. Ekstedt, H. Holm, and M. Afzal, “Security
mistakes in information system deployment projects,”
Information Management and Computer Security, vol. 19, no. 2, 2011.

[57] A. Wool, “A quantitative study of firewall configuration
errors,” Computer, pp. 62–67, 2004.

[58] NIST Computer Security Resource Center (CSRC), “National
Vulnerability Database,” 2011. [Online]. Available:
www.nvd.nist.org. [Accessed: 28-Apr-2011].

[59] The MITRE Corporation, “Common Weakness
Enumeration,” 2012. [Online]. Available:
http://cwe.mitre.org/.

[60] Offensive Security, “Exploit Database,” 2011. [Online].
Available: http://www.exploit-db.com/.

[61] A. Ozment, “Improving vulnerability discovery models,” in
Proceedings of the 2007 ACM workshop on Quality of protection, 2007,
pp. 6–11.

[62] S.-W. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya,
“Modeling vulnerability discovery process in Apache and IIS
HTTP servers,” Computers & Security, vol. 30, no. 1, pp. 50-62,
Jan. 2011.

[63] O. H. Alhazmi and Y. K. Malaiya, “Modeling the Vulnerability
Discovery Process,” 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE’05), pp. 129-138, 2005.

[64] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability
assessment of systems software,” in Proceedings of Annual
Reliability and Maintainability Symposium, 2005, pp. 615-620.

Part one: Summary

37

[65] T. Gerace and H. Cavusoglu, “The critical elements of the
patch management process,” Communications of the ACM, vol.
52, no. 8, p. 117, Aug. 2009.

[66] B. David, P. Pongsin, S. Dawn, and Z. Jiang, “Automatic
patch-based exploit generation is possible: Techniques and
implications,” IEEE Symposium on Security and Privacy, pp. 143-
157, May 2008.

[67] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R.
Chaffin, “Empirical estimates and observations of 0day
vulnerabilities,” in System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on, 2009, pp. 1–12.

[68] J. Wilander and M. Kamkar, “A comparison of publicly
available tools for dynamic buffer overflow prevention,” in
Proceedings of the 10th Network and Distributed System Security
Symposium, 2003, pp. 149–162.

[69] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer

Overflows : Attacks and Defenses for the Vulnerability of the
Decade,” in Foundations of Intrusion Tolerant Systems, 2003
[Organically Assured and Survivable Information Systems], 2003, pp.
227-237.

[70] I. Simon, “A comparative analysis of methods of defense
against buffer overflow attacks,” Web address: http://www. mcs.
csuhayward. edu/\~ simon/security/boflo. html, pp. 1-16, 2001.

[71] N. Frykholm, “Countermeasures against buffer overflow
attacks,” RSA Tech Note, pp. 1-9, 2000.

[72] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false
alarms of buffer overflow analysis using SMT solvers,”
Information and Software Technology, vol. 52, no. 2, pp. 210-219,
Feb. 2010.

[73] X. Wang, C. C. Pan, P. Liu, and S. Zhu, “SigFree: A Signature-
Free Buffer Overflow Attack Blocker,” | IEEE Transactions on
Dependable and Secure Computing, pp. 65–79, 2008.

[74] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner,
and M. Franz, “Multi-variant Program Execution: Using Multi-
core Systems to Defuse Buffer-Overflow Vulnerabilities,” in
2008 International Conference on Complex, Intelligent and Software
Intensive Systems, 2008, pp. 843-848.

[75] S. H. Yong and S. Horwitz, “Protecting C programs from
attacks via invalid pointer dereferences,” ACM SIGSOFT
Software Engineering Notes, vol. 28, no. 5, p. 307, Sep. 2003.

[76] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W.
Joosen, “RIPE: Runtime Intrusion Prevention Evaluator,” in
In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC, 2011.

[77] Y. Younan, “Efficient countermeasures for software
vulnerabilities due to memory management errors,” Katholieke
Universiteit Leuven, 2008.

[78] H. Shacham, M. Page, B. Pfaff, E. J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space

Part one: Summary

38

randomization,” in Proceedings of the 11th ACM conference on
Computer and communications security, 2004, pp. 298–307.

[79] PaX. Team, “PaX address space layout randomization
(ASLR).” [Online] 2003.
http://pax.grsecurity.net/docs/aslr.txt

[80] U. Erlingsson, “Low-level Software Security : Attacks and

Defenses Low-level Software Security : Attacks and Defenses,”
Redmond, WA, USA, 2007.

[81] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in USENIX, 2002,
pp. 275-288.

[82] J. Newsome, “Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity
software,” Network and Distributed System Security, no. May 2004,
2005.

[83] R. Lippmann et al., “Evaluating intrusion detection systems:
the 1998 DARPA off-line intrusion detection evaluation,”
Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00, pp. 12-26, 1998.

[84] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das,
“The 1999 DARPA on-line intrusion detection evaluation,”
Computer Networks, vol. 34, 2000.

[85] K. Salah and a. Kahtani, “Improving Snort performance under
Linux,” IET Communications, vol. 3, no. 12, p. 1883, 2009.

[86] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A. J. Cullen,
and P. Mirchandani, “Evaluating Intrusion Detection Systems
in High Speed Networks,” 2009 Fifth International Conference on
Information Assurance and Security, pp. 454-459, 2009.

[87] F. B. Ktata, N. E. Kadhi, and K. Ghédira, “Agent IDS based
on Misuse Approach,” Journal of Software, vol. 4, no. 6, pp. 495-
507, Aug. 2009.

[88] J. McHugh, “Testing Intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory,” ACM
Transactions on Information and System Security, vol. 3, no. 4, pp.
262-294, Nov. 2000.

[89] B. I. A. Barry and H. A. Chan, “Intrusion detection systems,”
in Handbook of Information and Communication Security, vol. 2001,
no. 6, P. Stavroulakis and M. Stamp, Eds. Springer, 2010, pp.
193-205.

[90] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An
overview of issues in testing intrusion detection systems,”
Citeseer. National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA, 2003.

[91] M. J. Ranum, “Experiences Benchmarking Intrusion Detection
Systems,” Security, pp. 1-10, 2001.

[92] R. Werlinger, K. Hawkey, and K. Muldner, “The challenges of
using an intrusion detection system: is it worth the effort?,”
SOUPS ’08 Proceedings of the 4th symposium on Usable privacy and
security, no. 1, 2008.

Part one: Summary

39

[93] R. Werlinger, K. Muldner, K. Hawkey, and K. Beznosov,
“Preparation, detection, and analysis: the diagnostic work of IT
security incident response,” Information Management & Computer
Security, vol. 18, no. 1, pp. 26–42, 2010.

[94] J. R. Goodall, W. G. Lutters, and A. Komlodi, “I know my
network: collaboration and expertise in intrusion detection,” in
Proceedings of the 2004 ACM conference on Computer supported
cooperative work, 2004, pp. 342–345.

[95] J. R. Goodall, W. G. Lutters, and A. Komlodi, “Developing
expertise for network intrusion detection,” Information
Technology & People, vol. 22, no. 2, pp. 92–108, 2009.

[96] T. Sommestad and A. Hunstad, “Intrusion detection and the
role of the system administrator,” in Proceedings of International
Symposium on Human Aspects of Information Security & Assurance,
2012.

[97] R. Chertov, S. Fahmy, and N. B. Shroff, “Emulation versus
simulation: A case study of TCP-targeted denial of service
attacks,” in Testbeds and Research Infrastructures for the Development
of Networks and Communities, 2006. TRIDENTCOM 2006. 2nd
International Conference on, 2006, p. 10–pp.

[98] C. Sangpachatanaruk, S. M. Khattab, T. Znati, R. Melhem, and
D. Mossé, “A simulation study of the proactive server roaming
for mitigating denial of service attacks,” in Proceedings of the 36th
annual symposium on Simulation, 2003, p. 7.

[99] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, and T. Znati,
“Proactive server roaming for mitigating denial-of-service
attacks,” in Information Technology: Research and Education, 2003.
Proceedings. ITRE2003. International Conference on, 2003, pp. 286–
290.

[100] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S.
Savage, “Inferring Internet denial-of-service activity,” ACM
Transactions on Computer Systems, vol. 24, no. 2, pp. 115-139, May
2006.

[101] V. Gupta, S. Krishnamurthy, and M. Faloutsos, “Denial of
service attacks at the MAC layer in wireless ad hoc networks,”
in MILCOM 2002, 2002, vol. 2, pp. 1118–1123.

[102] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds
and denial of service attacks: Characterization and implications
for CDNs and web sites,” in Proceedings of the 11th international
conference on World Wide Web, 2002, pp. 293–304.

[103] J. Mirkovic et al., “Testing a Collaborative DDoS Defense In a
Red Team/Blue Team Exercise,” IEEE Transactions on
Computers, vol. 57, no. 8, pp. 1098-1112, Aug. 2008.

[104] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and
DDoS defense mechanisms,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 2, p. 39, Apr. 2004.

[105] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and
DDoS Defense Mechanisms,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

Part one: Summary

40

[106] C. Douligeris, “DDoS attacks and defense mechanisms:
classification and state-of-the-art,” Computer Networks, vol. 44,
no. 5, pp. 643-666, Apr. 2004.

[107] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of
network-based defense mechanisms countering the DoS and
DDoS problems,” ACM Computing Surveys, vol. 39, no. 1, p. 3-
es, 2007.

[108] M. Glenn, “A Summary of DoS/DDoS Prevention,
Monitoring and Mitigation Techniques in a Service Provider
Environment,” 2003.

[109] K. A. Lee, “CS2SAT : The Control Systems Cyber Security
Self-Assessment Tool Tool,” Idaho Falls, Idaho, USA, 2008.

[110] US-CERT, “Cyber Security Evaluation Tool (CSET),” 2012.
[Online]. Available: http://www.us-
cert.gov/control_systems/satool.html. [Accessed: 30-Apr-
2012].

[111] T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, and CG, “A
Taxonomy for Comparing Attack-Graph Approaches,”
netsq.com, pp. 1-14, 2004.

[112] S. Roschke, F. Cheng, R. Schuppenies, and C. Meinel,
“Towards Unifying Vulnerability Information for Attack
Graph Construction,” in Proceedings of the 12th International
Conference on Information Security, 2009, p. 233.

[113] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-
attack graph generation tool,” in Proceedings DARPA Information
Survivability Conference and Exposition II. DISCEX’01, 2000, pp.
307-321.

[114] O. M. Sheyner, “Scenario graphs and attack graphs,” Carnegie
Mellon University, 2004.

[115] R. Lippmann, “Netspa: A network security planning
architecture,” Massachusetts Institute of Technology, 2002.

[116] R. Lippmann et al., “Validating and restoring defense in depth
using attack graphs,” in MILCOM, pp. 1-10, 2006.

[117] S. Jajodia, “Topological analysis of network attack
vulnerability,” Proceedings of the 2nd ACM symposium on
Information, computer and communications security - ASIACCS ’07,
p. 2, 2007.

[118] S. Jajodia, S. Noel, and B. O’Berry, “Topological analysis of
network attack vulnerability,” in Managing Cyber Threats: Issues,
Approaches and Challanges, chapter 5. Kluwer Academic Publisher, V.
Kumar, J. Srivastava, and A. Lazarevic, Eds. Springer US,
2003, pp. 247-266.

[119] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K.
Prole, Advances in Topological Vulnerability Analysis. Washington,
DC: IEEE, 2009, pp. 124-129.

[120] J. Homer, K. Manhattan, X. Ou, and D. Schmidt, “A Sound
and Practical Approach to Quantifying Security Risk in
Enterprise Networks,” Kansas State University, 2010.

Part one: Summary

41

[121] H. Holm, T. Sommestad, J. Almroth, and M. Persson, “A
quantitative evaluation of vulnerability scanning,” Information
Management & Computer Security, vol. 19, no. 4, 2011.

[122] S. Gregor, “The nature of theory in information systems,”
Management Information Systems Quarterly, pp. 1-45, 2006.

[123] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar,
“Probabilistic Relational Models,” in Introduction to Statistical
Relational Learning, L. Getoor and B. Taskar, Eds. MIT Press,
2007, pp. 129-175.

[124] F. . Jensen, Bayesian Networks and Decision Graphs. Secaucus, NJ,
USA.: Springer New York, 2001.

[125] OMG, “OMG Unified Modeling Language (OMG UML),
Infrastructure,” 2009.

[126] F. . Jensen, Bayesian Networks and Decision Graphs. Secaucus, NJ,
USA.: Springer New York, 2001.

[127] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide
to the Common Vulnerability Scoring System (CVSS), Version
2.0, Forum of Incident Response and Security Teams.” 2007.

[128] D. Ahmad, “The Contemporary Software Security Landscape,”
IEEE Security & Privacy Magazine, vol. 5, no. 3, pp. 75-77, May
2007.

[129] H. Holm, T. Sommestad, U. Franke, and M. Ekstedt, “Success
rate of remote code execution attacks – expert assessments and
observations,” Journal of Universal Computer Science, vol. 18, no. 6,
pp. 732-749, 2012.

[130] H. Holm, “Empirical analysis of signature based intrusion
detection for zero-day exploits,” Working paper, Royal Institute
of Technology, 2012.

[131] M. Gammelgård, “Business value assessment of it investments
an evaluation method applied to the electrical power industry,”
Royal Institute of Technology (KTH), 2007.

[132] H. Cavusoglu, B. Mishra, and S. Raghunathan, “A model for
evaluating it security investments,” Communications of the ACM,
vol. 47, no. 7, pp. 87-92, 2004.

[133] R. J. Anderson, Security Engineering: A guide to building dependable
distributed systems. New York, NY, USA: Wiley Publishing, 2008.

[134] The MITRE Corporation, “The Common Attack Pattern
Enumeration and Classification,” (website), 2011. [Online].
Available: http://capec.mitre.org/.

[135] S. Marechal, “Advances in password cracking,” Journal in
Computer Virology, vol. 4, no. 1, pp. 73-81, 2007.

[136] M. Dell’ Amico, P. Michiardi, and Y. Roudier, “Password
Strength: An Empirical Analysis,” 2010 Proceedings IEEE
INFOCOM, pp. 1-9, Mar. 2010.

[137] J. Cazier, “Password security: An empirical investigation into e-
commerce passwords and their crack times,” Information Security
Journal: A Global, 2006.

Part one: Summary

42

[138] “Free Rainbow Tables,” 2011. [Online]. Available:
http://www.freerainbowtables.com/. [Accessed: 01-Apr-
2011].

[139] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, “Statistical
methods for eliciting probability distributions,” Journal of the
American Statistical Association, vol. 100, no. 470, pp. 680-701,
2005.

[140] L. J. Cronbach and R. J. Shavelson, “My Current Thoughts on
Coefficient Alpha and Successor Procedures,” Educational and
Psychological Measurement, vol. 64, no. 3, pp. 391-418, Jun. 2004.

[141] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297-334, 1951.

[142] R. T. Clemen and R. L. Winkler, “Combining probability
distributions from experts in risk analysis,” Risk Analysis, vol.
19, no. 187, pp. 187-204, 1999.

[143] A. Fink, J. Kosecoff, M. Chassin, and R. H. Brook,
“Consensus methods: characteristics and guidelines for use.,”
American journal of public health, vol. 74, no. 9, pp. 979-83, Sep.
1984.

[144] A. H. Ashton, “Does consensus imply accuracy in accounting
studies of decision making?,” The Accounting Review, vol. 60, no.
2, pp. 173–185, 1985.

[145] D. J. Weiss and J. Shanteau, “Empirical Assessment of
Expertise,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 45, no. 1, pp. 104-116, 2003.

[146] M. J. Abdolmohammadi and J. Shanteau, “Personal attributes
of expert auditors,” Organizational Behavior and Human Decision
Processes, vol. 53, no. 2, pp. 158–172, 1992.

[147] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-based assessment of expertise: How to decide if
someone is an expert or not,” European Journal of Operational
Research, vol. 136, no. 2, pp. 253–263, 2002.

[148] R. M. Cooke, Experts in Uncertainty: Opinions and Subjective
Probability in Science. New York, New York, USA: Open
University Press, 1991.

[149] R. French, “The Turing Test: the first 50 years.,” Trends in
cognitive sciences, vol. 4, no. 3, pp. 115-122, Mar. 2000.

[150] R. M. O’Keefe and D. E. O’Leary, “Expert system verification
and validation: a survey and tutorial,” Artificial Intelligence Review,
vol. 7, no. 1, pp. 3-42, Feb. 1993.

[151] R. Agarwal, R. Kannan, and M. Tanniru, “Formal validation of
a knowledge-based system using a variation of the Turing
test,” Expert Systems with Applications, vol. 6, no. 2, pp. 181-192,
Apr. 1993.

43

Part two:
Papers

Paper A: A probabilistic relational model for security risk analysis

44

Paper A:

A probabilistic relational

model for security risk

analysis
Teodor Sommestad, Mathias Ekstedt and Pontus Johnson

Abstract

Information system security risk, defined as the product of the

monetary losses associated with security incidents and the

probability that they occur, is a suitable decision criterion when

considering different information system architectures. This

paper describes how probabilistic relational models can be used

to specify architecture metamodels so that security risk can be

inferred from metamodel-instantiations.

A probabilistic relational model contains classes, attributes, and

class-relationships. It can be used to specify architectural

metamodels similar to class diagrams in the Unified Modeling

Language. In addition, a probabilistic relational model makes it

possible to associate a probabilistic dependency model to the

attributes of classes in the architectural metamodel. This paper

proposes a set of abstract classes that can be used to create

probabilistic relational models so that they enable inference of

security risk from instantiated architecture models. If an

architecture metamodel is created by specializing the abstract

classes proposed in this paper, the instantiations of the

metamodel will generate a probabilistic dependency model that

can be used to calculate the security risk associated with these

instantiations. The abstract classes make it possible to derive the

dependency model and calculate security risk from an instance

model that only specifies assets and their relationships to each

other. Hence, the person instantiating the architecture

metamodel is not required to assess complex security attributes

to quantify security risk using the instance model.

Paper A: A probabilistic relational model for security risk analysis

45

1 Introduction
Security issues related to information technology continue to be

a concern in today’s society, and for decision makers in it.

Security is a complex property, and several diverse factors need

to be considered to assess the security of a system’s architecture.

To support decision makers a plethora of approaches,

frameworks and methods has been proposed for analyzing and

ranking security – all with some explicit or implicit definition of

security.

From a decision maker’s perspective, tools and techniques to

assess security of both existing and potential future architectures

are needed. There is also a need to relate the result of such an

assessment to business decisions, such as investment alternatives

that strengthen security. The concept of risk, defined as the

product of the monetary losses associated with security incidents

and the probability that they occur, has been suggested as a

suitable input to decision making [1,2]. Several financial methods

with risk measurements as a basis have also been adapted for

security to provide decision makers with tools to manage

security efficiently from a business perspective. For example

return on security investment [3], and the methods presented in

[4-7].

Although risk is well defined and practical for decision making, it

is often difficult to calculate a priori. Analysis frameworks such

as [4] restrict themselves to three variables: the probability that a

threat surfaces, the probability that an attack succeeds, and the

loss suffered from a successful attack. While quantifying these

variables provides the necessary means for assessing risk, it is not

apparent how to obtain the numbers needed to do so. Decision

makers typically have an understanding of the architecture of

their organization and its systems. However, their understanding

of the dependencies among the properties of risk treatments, the

threat environment and sensitive assets is hazy. Methods that

support decision makers by deriving security risk associated with

both existing and potential future architectures are thus

desirable.

Paper A: A probabilistic relational model for security risk analysis

46

Architectural models provide decision makers with a convenient

tool to abstract and capture different aspects of information

systems in diagrammatic descriptions. Metamodels like the one

offered in CORAS [8] guide the modeler to create graphical

descriptions that can be used to assess risk. This type of

metamodels does however not help the modeler to identify the

risks which their particular architecture face, and do not provide

the data needed to quantify security or risk based on the model.

This analysis is instead left for the user of the metamodel.

Methods such as [9] generate attack graphs from descriptions of

computer networks and offer an alternative when the decision

concerns network security. But these do not provide support for

assessing the probability that a certain threat surfaces, i.e. that

certain attack steps are attempted, nor do they include losses in

the models. Consequently, they do not produce a measure of

security risk for the decision maker. This paper describes a

formalism for constructing architecture metamodels so that

security risk can be inferred from the metamodel’s instantiations.

1.1 Architecture models and

security risk analysis

If security risk could be easily quantified from architecture

models of information systems this would provide an intuitive

way to assess the security risk associated with both the current

“as-is” scenario, and potential future “to-be” scenarios. The

decision maker would create models of different architectures by

representing relevant objects and relationships in diagrammatic

descriptions and from these assess the security risk associated

with the architectures. These architecture models may cover

management aspects, operational aspects or pure technical

aspects. They can for instance be created to assess the security

risk associated with different network architectures, or to assess

the impact of different password policies on the overall security

risk.

To make accurate predictions from an architecture model it

needs to represent objects and relationships that influence

security risk. If network architectures are assessed, it would for

example be of relevance to include information on the

placement of firewalls in the architecture model. A metamodel

Paper A: A probabilistic relational model for security risk analysis

47

can guide the decision maker to create instance models that

include relevant objects and relationships. To provide this

guidance the metamodel must resolve how security risks

(according to some theory) depend on different architectures, at

least to some level of detail.

If the security risk was possible to compute based on the theory

of how risk relates to different architectures it would relieve the

decision maker of extensive analytical efforts. Security risk could

then be derived from instantiated architecture models, and the

decision maker would only be required to represent the objects

and relationships that constitute the architecture.

This paper proposes the use of probabilistic relational models

(PRMs) [10] to specify metamodels for security risk analysis. A

PRM is similar to a Class Diagram in the Unified Modeling

Language (UML) [11] and contains classes, attributes, and class-

relationships. In addition, a PRM makes it possible to associate a

probabilistic model to the metamodel by defining relationships

between the attributes of classes in the metamodel. More

specifically, a PRM makes it possible to define how the value of

one attribute depends on the value of other attributes in an

architectural model. With these elements a PRM allows, in a

general sense, architecture metamodels to be coupled to a

probabilistic inference engine. A PRM can for instance specify

how different logical network architectures and properties of its

users influence the security risk an organization faces. Hence, if

metamodels are expressed using the PRM formalism it can be

specified how security risk should be inferred from the

metamodel’s instantiations.

There is however an infinite number of (more or less suitable)

ways that a PRM can be structured for security risk analysis. A

number of concepts need to be related to each other when

security risk is assessed. The main contribution of this paper is

the proposition of a package of abstract PRM-classes that can be

used to create PRMs that infer security risk from architecture

models.

The proposed class-package is expressed as a PRM and specifies

a set of classes, attributes, class-relationships and a probabilistic

model for how attributes of these classes depend on each other.

Paper A: A probabilistic relational model for security risk analysis

48

The classes in this PRM are abstract and cannot be directly

instantiated into an architecture model. They can however be

made concrete if they are specialized into subclasses according to

a set of constraints. If architecture models are instantiations of

such concrete classes, then security risk is possible to infer from

the architecture model. This inference can also be performed on

architecture models that merely represent assets and assets

relationships to each other. Hence, little security expertise is

required to instantiate the architecture model, and security risk

can still be inferred.

1.2 Outline

Chapter two describes related work within the field of security

and risk analysis. Chapter three explains the PRM formalism and

the terminology associated with it. Chapter four describes the

relationship between the different models presented in

subsequent chapters. Chapter five presents the main

contribution of this paper – a PRM consisting of abstract classes

that are associated with a set of constraints that state how these

can be specialized into concrete subclasses. Chapter six

exemplifies how these abstract classes can be specialized into

concrete classes and how probabilistic models can be associated

with these classes. In chapter seven a case study applying these

specialized (concrete) classes to assess security risk associated

with an automation system in power station is described. In

chapter eight the proposed modeling method is discussed, and in

chapter nine conclusions are drawn.

2 Related works
The use of architectural modeling languages has a long history in

management and development of information systems.

Modeling languages such as the Unified Modeling Language

(UML) [11], the Systems Modeling Language (SySML) [12], and

the Business Process Modeling Notation (BPMN) [13] provide

support to create diagrammatic descriptions of information

system architectures and system environments. These

diagrammatic architecture descriptions can be developed for a

variety of purposes, including different types of analysis. One

aspect that can be analyzed based on architectural descriptions is

Paper A: A probabilistic relational model for security risk analysis

49

security, and there are several methods and modeling languages

specifically supporting this purpose. The formalism presented in

this paper supports quantification of security risk based on

system architecture models, and does not require security

expertise to perform the actual quantification. This section will

explain how similar modeling languages and methods relate to

the one proposed in this paper.

There are several modeling languages targeted at providing

support for security assessments in early phases of system

development. Methods like misuse cases [14] and abuse cases

[15, 16] align with well established methods for software

requirements engineering to provide support for depicting

potential threats and use cases that mitigate these. While these

two offers a language to describe threats and countermeasures,

they are not associated with methods to quantitatively assess

security from the models created. This is also the case for

languages such as SecureUML [17] and SPML [18] that use

models with the purpose of model-driven development.

Two other modeling languages that are intended for the system

development phases are Secure Tropos [19] and UMLsec [20].

Both of these provide a language and methodology which can

provide a basis for security assessments. Secure Tropos extends

the Tropos methodology [52] and can be used to specify security

concerns associated with planned systems. The UML extension

UMLsec provides a language to depict security-relevant

information in diagrams describing a system specification [20].

Both these also provide support for automated verification of

architecture models. Secure Tropos is associated with a set of

rules that can be used to verify if goals related to trust are

fulfilled when trust is delegated [50]. UMLsec makes it possible

to evaluate if UMLsec-diagram fulfill a set of stipulated

requirements [20,51]. The output of these automated analysis

methods are however a pass/fail result that state if the

architecture fulfill the requirements. Such verifications can

support security risk analysis, but there are no automated means

to compute security risk directly from them.

The pass/fail output is also a characteristic of the Common

Criteria (CC) [21]. The CC framework offers a method to specify

security requirements and evaluate their fulfillment. In CC’s

Paper A: A probabilistic relational model for security risk analysis

50

general conceptual model the relationships between owners,

assets, risks, countermeasures, threat agents and threats are

described. However, an evaluation employing CC’s framework

does not quantify risk. Instead it provides a pass/fail result

together with a rating of the assurance level (1-7) of the

evaluation.

A method specifically developed for analyzing and quantifying

risk is CORAS [8]. With guidance from CORAS’s metamodel, a

graphical description of the threat scenario is created and used as

a support to determine if, and how, the identified risks should be

treated. This is done by modeling the relationships between

assets, threats, vulnerabilities, unwanted events, risks and

treatments. Although risk in CORAS is defined as the product of

likelihood and consequence, there is no analysis framework

coupled to the metamodel and thus no algorithmic method to

calculate risk based on a graphical description. There is also no

description of what different types of risk treatments that should

be modeled, or how risk treatments influence risks in CORAS.

These calculations, as well as the content of the CORAS

diagram, must instead be assessed by the persons applying

CORAS.

Several other analysis methods also depend on analysts to

quantify risk. CCTA Risk Analysis and Management Method

(CRAMM) [22] offer a structured method to assess risk

qualitatively by identifying: 1) how frequent an incident occurs,

2) the probability that incidents would result in a worst case

scenario, and 3) loss values. These three values are used to

produce a monetary value for annual loss expectancy.

Information Security Risk Analysis Method (ISRAM) [23] does

in a similar way guide the analyst to assess probabilities for

security incidents to occur and to assess the potential

consequences of these. The same type of guidance is also

provided by Operationally Critical Threat, Asset and

Vulnerability Evaluation (OCTAVE) [24].

Threat trees [25] and attack trees [26,27] are graphical notations

that have evolved from fault trees, used to illustrate attackers’

goals together with possible ways to reach these goals. The

attacker’s main goal is depicted as the root of the tree and the

steps to reach this goal are broken down into sub-goals of the

Paper A: A probabilistic relational model for security risk analysis

51

attack through “AND” and “OR” relationships. Threat trees and

attack trees have been applied in several ways to assess security.

In [25] it is suggested that the threat trees should be used to rank

the threats is terms of risk. In [27] it is suggested that attack trees

can be used to assess if attacks are possible, if special tools are

needed or how much effort an attack requires.

A similar method for representing attacks is attack graphs. In

attack graphs the sequence of steps needed to accomplish the

attack is expressed rather than the set of steps; and this is

modeled in a graph structure instead of a tree structure. Attack

graphs have for instance been used to assess the probability that

an attacker reaches particular attack step [28], or to analyze the

security of system configurations in terms of the weakest

adversary that can compromise the network [29]. Several similar

analysis methods exist in addition to these (see for example [30-

33]). A problem with attack graphs is that they scale poorly and

become extremely complex even for moderately sized system

architectures. Methods have been proposed to reduce the

complexity and computational problems associated with attack

graphs in [30,31,34]. Probabilistic treatment of the relationship

between different attack steps is another suggested solution to

the scalability problem. In [35] Bayesian networks are used to

represent attack graphs more compactly and to calculate the

probability that a network-attack succeeds, as oppose to doing so

deterministically.

The methods based on trees and graphs provide a link between

vulnerabilities and plausible consequences. Their structure also

facilitates straightforward means for analysis, for example of how

likely an how likely an attack is to succeed or if an attack step is

reachable. None of these abovementioned methods does

however offer means for assessing how likely an adversary is to

attempt combinations of attacks steps. Hence, the probability of

a certain attack being realized cannot be inferred and security

risk cannot be calculated.

A natural extension of attack trees and attack graphs is to include

controllable countermeasures in the model. In [25]

countermeasures are added as leaves of threat trees; in [36] and

[37] it is shown how threats and countermeasures can be related

to each other in tree structures; in [26] countermeasures and

Paper A: A probabilistic relational model for security risk analysis

52

attacks are connected in directed acyclic graphs. In [38] attack

trees with countermeasures as leaves are called Defense trees.

Techniques have been presented which use Defense trees to

model strategic games in security [39], to model conditional

preference of defense techniques using conditional preference

nets [40], and for performing economic evaluation of security

investments [38].

The method described in [38] allows a modeler to specify a

defense tree and a number of variable values. From this, return

on security investment as well as the adversary’s return on attack

can be inferred. As a step in these calculations annual loss

expectancy is derived. There is however no method for deriving

the defense tree or the variable values required from an

architectural description, and new variable values must be

defined after an option is chosen. Hence, the method relies on

analysts to continuously update the model.

Methods have been developed to ease the burden of creating

tree and graph structures by deriving them from architectural

models. In [41-43] methods are described for deriving attack

graphs from network configurations and known vulnerabilities;

in [44] a method for deriving probabilistic defense graphs from

architectural models is described. These methods do however

focus strictly on prevention of attempted attacks and lack the

power to represent treatments that limit the losses from

successful attacks or deter adversaries from attempting them.

Consequently, they do not provide the information required to

determine security risk. The methods presented in [41-43] are

also focused entirely on computer networks and thus lack the

capability to represent other facets of security, such as human

behavior or organizational policies.

Unlike the abovementioned approaches the formalism presented

herein makes it possible to specify how expected loss should be

quantified from an architecture model. The formalism makes it

possible to specify architectural metamodels that generates a

probabilistic dependency model when they are instantiated. The

conceptual structure of this dependency model extends the

conceptual model presented in Common Criteria [21] by

defining attack steps as a part of a threat. Attack steps are related

to countermeasures in directed acyclic graphs, similar to the

Paper A: A probabilistic relational model for security risk analysis

53

graphs presented in [26]. Attack steps can also be associated to

each other probabilistically, similar to the probabilistic attack

graphs in [35]. With this extension the proposed dependency

model allows inference of how probable attempts are and how

probable attempts are to succeed, as well as inference of

expected loss.

3 Probabilistic relational

models
A probabilistic relational model (PRM) [10] specifies a template for a

probability distribution over an architecture model. The template

describes the metamodel for the architecture model, and the

probabilistic dependencies between attributes of the architecture

objects. A PRM, together with an instantiated architecture model

of specific objects and relations, defines probability distributions

over the attributes of the objects. The probability distributions

are then used to infer the values of unknown attributes.

3.1 Architecture metamodel

An architecture metamodel M describes a set of classes,

X1,…,Xn. Each class is associated with a set of descriptive

attributes and a set of reference slots (relationships).

The set of descriptive attributes of a class X is denoted A(X).

Attribute A of class X is denoted X.A and its domain of values

is denoted V(X.A). For example, in Figure 1, the class System has

the two descriptive attributes Availability and Reliability, both with

the domain {Low, Medium, High}.

The set of reference slots of a class X is denoted R(X). We use

X.φ to denote the reference slot φ of X. Each reference slot φ is

typed with the domain type Dom[φ]= Xi and the range type

Range[φ]= Xj. A reference slot φ denotes a function from Xi to

Xj, and its inverse φ-1 denotes a function from Xj to Xi. The class

SystemAdministrator in Figure 1 has the reference slot Administrates

whose range is the class System. The reference slot

System.Administrates-1 then has range SystemAdministrator. Thus, the

fundamental modeling constructs of PRMs are the same as in

general conceptual modeling techniques.

Paper A: A probabilistic relational model for security risk analysis

54

System

Availability

Reliability

System Administrator

0..*

Competence

Administrates0..*

Figure 1. An example meta-model.

3.2 Architecture instantiation

An architecture instantiation I (i.e. an architecture model) specifies

the set of objects in each class X, and the values for attribute(s)

and reference slot(s) of each object. For example, Figure 2

presents an instantiation of the meta-model described in Figure

2. It specifies a two particular System-object, particular

SystemAdministrator, and the references between these. Values to

the attributes are not yet ascribed.

SAGE

System

Availability

Reliability

MrEnzensberger

SystemAdministrator

Competence

Administrates

WhirlWind

System

Availability

Reliability

Administrates

Figure 2. An example relational skeleton, i.e. a partly
instantiated model.

3.3 Probabilistic model over

attributes

So far, the probabilistic relations between the attributes have not

been addressed. A PRM Π specifies a probability distribution

over all instantiations I of the metamodel M. This distribution is

expressed in terms of a Bayesian network [45] and it consists of a

qualitative dependency structure, and associated quantitative

parameters.

The qualitative dependency structure is defined by associating

attributes X.A with a set of parents Pa(X.A) that causally

influence these attributes. Each parent of X.A has the form

X.τ.B where B ∈ A(X.τ) and τ is either empty, a single reference

slot φ or a sequence of reference slots φ1,…,φk such that for all i,

Paper A: A probabilistic relational model for security risk analysis

55

Range[φi]=Dom[φ(i+1)]. We call τ a slot chain. Note that when

X.τ.B reference attributes external to the class X, it might be

referencing a set of attributes rather than a single one since there

may exist multiple instantiated objects of one class. In these

cases, X.A depends probabilistically on an aggregation function

over those attributes. In general these aggregation functions

could take any form. In this paper however, the logical

operations AND, OR, and the arithmetic operation SUM (for

summing).

In Figure 3 the running example is extended with two attribute

dependencies. Firstly, the attribute Availability of the class System

have the attribute Reliability of the same class as parent, meaning

that the external property availability is dependent on the more

internal property reliability. Secondly, System.Availability is also

dependent on the attribute System.Administrates-1.Competence, i.e.

the competence of the system administrators that administrates

the system. In the example this dependency is aggregated in

terms of MAX function essentially illustrating that the system

availability will be dependent on the most competent

administrator. These aggregate properties are associated with a

probability distribution for the case when X.τ.B is an empty set

in the architecture instantiation. For instance, if

MAX(Administrates-1.Competence)could return Low if there is no

administrator assigned.

Given a set of parents for an attribute we can now define a

probability model by associating a conditional probability

distribution with the attribute, P(X.A |Pa(X.A)). For instance,

P(System.Availability=High| Reliability=High, MAX(Administrates-

1.Competence)=Medium)=90% specifies the probability that the

system has a high availability given that the most competent

system administrator has a medium competence and the system

has a high reliability. Conditional probability distribution tables

for the running example are presented in Figure 3.

Paper A: A probabilistic relational model for security risk analysis

56

System

Availability

Reliability

System Administrator

0..*

Competence

Administrates

0..*

MAX

Reliability H H H M M M L L L

MAX(Administrates -̂1.Competence) H M L H M L H M L

High 1 0.9 0.8 0.2 0.1 0.1 0 0 0

Medium 0 0.1 0.1 0.8 0.9 0.8 0.2 0.1 0

Low 0 0 0.1 0 0 0.1 0.8 0.9 1

High 0.2

Medium 0.4

Low 0.4

High 0.7

Medium 0.2

Low 0.1

Figure 3. An example meta-model including a qualitative
and a quantitative dependency structure.

We can now define a PRM Π for a meta-model M as follows.

For each class X and each descriptive attribute A ∈ A(X), we

have a set of parents Pa(X.A), and a conditional probability

distribution that represents PΠ(X.A|Pa(X.A)).

Given an instantiated metamodel without attribute values, σr, a

PRM Π specifies a probability distribution over a set of

instantiations I consistent with σr:

 (|) ∏ ∏ (| ()) ∈ () ∈ ()

where σr(X) are the objects of each class in the instantiated

metamodel. Hence, the attribute values can be inferred.

A PRM thus constitutes a formal machinery for calculating the

probabilities of various architecture instantiations. This allows us

to infer the probability that a certain attribute assumes a specific

value, given some (possibly incomplete) evidence of the rest of

the architecture instantiation.

In essence, a PRM define how a Bayesian network shall be

generated over the attributes in an instance model. An extension

of Bayesian networks intended to support decision-making is so

called influence diagrams [47]. Influence diagrams include

attributes that represents utility which are sought to be

maximized or minimized. These utility nodes have a domain of

utility values which are just as regular Bayesian attribute values

also ascribed probabilities. It is shown in [46] that PRMs can

Paper A: A probabilistic relational model for security risk analysis

57

easily be extended to also include attributes representing the

utility nodes used in influence diagrams [47]. In this paper a

PRM with this extension is used.

3.4 Class inheritance and class

specialization

PRMs further allow specializing classes through inheritance

relationships. Classes can be related to each other using the

subclass relation «. If ERPSystem « System then ERPSystem is a

subclass of System and System is a superclass of ERPSystem. Let the

finite set of subclasses to class X be C[X]. So if Z, Y ∈ C[X],

both Z and Y are subclasses of X. A subclass Y always contains

the reference slots and attributes of its superclass X. As

exemplified in Figure 4, At(ERPSystem) is a subset of At(System)

and R(ERPSystem) is a subset of R(System). The conditional

probability distributions of inherited attributes can however be

specialized in subclasses. A subclass can also refine the range of

inherited reference slots.

For each subclass Y ∈ C[X] and inherited attribute B ∈ A(X),

there are parents Pa(Y.B) and a conditional probability

distribution P(Y.B| Pa(Y.B)). These can be equal to attributes

and parents in the superclass X, i.e. Pa(Y.B)=Pa(X.B) and P(Y.B

| Pa(Y.B))= P(X.B | Pa(X.B)), or they can be specialized to

include additional parents in Pa(Y.B) or a different conditional

probability distribution for P(Y.B | Pa(Y.B)). For example, as

ERPSystem ∈ C[System], the probability distribution for

ERPSystem.Availability may be different (specialized) from

System.Availability. The parents of ERPSystem.Availability may also

be different from those of System.Availability. If the set of parents

of an attribute is changed, i.e. Pa(Y.B)≠ Pa(X.B), then the

probability distribution must be specialized.

A subclass Y ∈ C[X] may also be specialized with regard to the

range of its reference slots. The reference slot is then refined. Let

X.φ be a reference slot where Range(X.φ)=U. The reference slot

of the subclass, Y.φ, can have the same range as X.φ, i.e.

Range(Y.φ)=Range(X.φ)=U. Or the reference slot of the subclass,

Y.φ, can be specialized by restricting it to subclasses of U, i.e.

Range(Y.φ)=W, where W ∈ C[U]. For instance, if

Paper A: A probabilistic relational model for security risk analysis

58

EnterpriseSystemAdministrator is a subclass of SystemAdministrator,

then the reference slot EnterpriseSystemAdmin.Administrate could

be refined to the range ERPSystem since it is a subclass of System.

ERPSystem

<< System

Availability

Reliability

EnterpriseSystemAdmin

<<SystemAdministrator

0..*

Competence

Administrates

0..*

MAX

High 0.3

Medium 0.4

Low 0.2

High 0.6

Medium 0.2

Low 0.2

System

Availability

Reliability

SystemAdministrator

0..*

Competence

Administrates

0..*

MAX

Figure 4. Subclasses of System and SystemAdministrator.
The conditional probabilitiesof ERPSystem.Reliability and
EnterpriseSystemAdmin.Competence are spececialized.
The reference slot EnterpriseSystemAdmin.Administrates
is refined to the range ERPSystem.

4 Abstract and Concrete

PRM packages
This paper presents a PRM that enables calculation of the

expected loss, e.g. monetary loss, due to poor security. A set of

abstract classes and an incomplete probabilistic model of how

attributes of these classes depend on each other is described.

This set of abstract classes will in this paper be referred to as the

AbstractPRM-package (analogous to packages in UML) and they

define a structure that is favorable to metamodels supporting

security risk analysis. The AbstractPRM-package is similar to the

general conceptual model in CC [21] and does for example

include the classes Asset, Countermeasure, ThreatAgent and Threat.

By specializing these abstract classes into concrete subclasses a

metamodel associated with a probabilistic model for security risk

Paper A: A probabilistic relational model for security risk analysis

59

can be created (cf. Figure 5). In this paper the set of concrete

classes is referred to as the ConcretePRM-package.

Concrete PRM

<Specialize> <Specialize><Specialize>

<Specialize>

<Instantiate>

<Import>

Abstract PRM

<InstanceOf>

<InstanceOf>

<InstanceOf>

Instance model

P(A | B) = ?

e.g. Data store

e.g. Operational statistics

<Specialize>

<InstanceOf>
<InstanceOf><InstanceOf> <InstanceOf>

0..*

0..*

1..*

1..*

0..*

0..*
1..1

0..*

<Refine>
P(A | B=x) = 0.33

P(A) = 0.47

P(A | B=y) = 0.67

e.g. Asset

0..*

1..*
0..*

Figure 5. The AbstractPRM-package details classes,
attributes and reference slots and an incomplete
probabilistic model, here represented by dashed arcs. The
ConcretePRM-package specialize the classes in the
AbstractPRM-package and details the probabilistic model.
When the ConcretePRM is instantiated a probabilistic
model over security risk can be derived.

Concrete subclasses to those in the AbstractPRM package are

created using inheritance relationships. The concrete class then

specialize the abstract class. A ConcretePRM-package can for

instance include the countermeasure Firewall, the threat agent

Outsider or the asset DataStore. The concrete subclasses can, as

described in section 3.4, both refine the reference slots of its

superclass and specialize the probabilistic model of its inherited

attributes. These two features are used to create a concrete class

in a ConcretePRM-package – no other operations are needed.

Hence, there is no need to define new attributes of classes, and

no need to identify classes that are not subclasses to these in the

AbstractPRM-package. The AbstractPRM-package is associated

with as set of constraints that define how the probabilistic model

can be specified ConcretePRM-packages. These constraints do

Paper A: A probabilistic relational model for security risk analysis

60

for instance say that the attribute

PreventiveCountermeaure.Functioning only can be a parent of

AttackStep.PossibleToAccomplish and that the slot chain associated

with this dependency should contain reference slots that connect

two assets.

If these constraints are followed, instantiations of the

ConcretePRM will express probabilistic models that facilitate

straightforward analysis of security risk. More specifically, the

constraints ensure that if the assets and asset-to-asset

relationships in a ConcretePRM are instantiated, a probabilistic

dependency model can be derived. This probabilistic

dependency model will express the relationships between assets,

countermeasures, attack steps, threats, and threat agents in the

instance model. Hence, just as abstract classes in object-oriented

programming languages help a developer with blueprints and

core functionality, this AbstractPRM-package helps a

metamodeler to create a ConcretePRM-package for security risk

analysis. It ensures that instantiations of the classes in a

ConcretePRM-package produce a probabilistic dependency

model that can be used to infer the probability that attacks are

successful and the probability that they will be attempted. It also

ensures that this can be inferred from an architectural model that

only describes assets and the relationships between assets. Loss

values for a successful attack can either be defined in the

ConcretePRM-package, or inserted into the instance model

directly. Adding such values provides the necessary means to

assess expected loss.

5 An AbstractPRM-package

for security risk Analysis
This chapter describes the AbstractPRM-package for security

risk analysis with classes, attributes, reference slots, and attribute-

dependencies. This chapter is the locus of this paper’s

contribution. The AbstractPRM-package consist of an

architectural metamodel and a set of constraints that define how

its probabilistic model over its classes may be specialized in

concrete subclasses. The AbstractPRM-package is depicted in

Figure 6 and described below. This description is divided in two

Paper A: A probabilistic relational model for security risk analysis

61

subsections. The architectural metamodel is described first;

thereafter the probabilistic model is described together with the

constraints that state how subclasses can be defined in

ConcretePRM-packages.

Legend

ReactiveCountermeasure

Functioning

Activated

Asset

Countermeasure

ThreatAgent

DetectiveCountermeasure

ContingencyCountermeasure

ExpectedLoss

AccountabilityCountermeasure

AttackStep

OR

Functioning

PossibleToAccomplish

Functioning

Target

Functioning

Functioning

IsDetected

PreventiveCountermeasure

Functioning

GiveRiseTo

Association

Resources

Threat

PossibleToAccomplish

IsAttempted

Leaves accountability

AND

OR

1..*

1..*

0..*

1

ExpectedLoss

Owner

ExpectedLoss

SUM

Value

ExpectedLoss

ExpectedLoss

ExpectedLoss

ExpectedLoss

ExpectedLoss

IsRealized

1..*
0..*

0..*

Includes0..*

1

IsAttempted T T F F

PossibleToAccomplish T F T F

True 1 0 0 0

False 0 1 1 1

OR(Includes.PossibleToAccomplish) T F

True 1 0

False 0 1

OR(Includes.LeavesAccountability) T T F F

PossibleToAccomplish T F T F

True 0 0 1 0

False 1 1 0 1

True 0

False 1

True 0

False 1

True 0.99

False 0.01

OR(Includes-1.RaisedBy.Resources) H M L

True 1 0.5 0

False 0 0.5 1

High 0.33

Medium 0.33

Low 0.34

0..*

Class

Attribute

ReferenceSlot
[Domain] [Range]

[Concrete attribute dependency]

[Possible attribute dependency]

[Child][Parent]

[Child][Parent]

Figure 6. An AbstractPRM-package for assessing security
risk. Both the architectural metamodel and probabilistic
dependencies are shown here. Some probabilistic
dependencies (solid arcs) are concrete, while other (dashed
arcs) are potential probabilistic dependencies that may be
defined in ConcretePRM-packages. Conditional probability
tables describe attribute dependencies for those attribute
dependencies that are concrete in this package.

Throughout the description of the AbstractPRM-package it will

be referred to concepts used in Common Criteria (CC) [21]. CC

defines an internationally well established terminology for

security risk assessments and its general conceptual model

describes concepts that relate to security risk. In CC’s general

conceptual model, threat agents wish to damage and/or abuse

assets. Threat agents therefore give rise to threats that are

Paper A: A probabilistic relational model for security risk analysis

62

associated with an asset. Threat also increase risk to assets.

Owners value assets and wish to minimize risk and they can

impose countermeasures to do so. The AbstractPRM-package

includes these concepts in and arranges them in a similar manner

as CC’s general conceptual model. However, to support

quantitative risk analysis some additional constructs are included

in the AbstractPRM-package: attack steps are added and related

to each other, threats, assets and countermeasures; classes are

given descriptive attributes; and a dependency structure is

defined over these attributes. The AbstractPRM and CC’s

general conceptual model thus differ somewhat. These

differences are just as the similarities described using CC’s

terminology.

5.1 Architectural metamodel

As CC’s general conceptual model this metamodel relates a

Threat to the ThreatAgent that gives rise to the threat. This is done

with the reference slot ThreatAgent.GiveRiseTo with range Threat.

Unlike CCs conceptual model however, this metamodel does not

directly relate a Threat to an Asset. This is instead done through

the class AttackStep. The AbstractPRM in Figure 6 requires a set

of AttackStep-classes to be detailed as a part of the Threat using

the reference slot Threat.Includes. This set of AttackStep-classes is

similar to the concept “attack” that in CC’s shall be used

together with threat agent and asset to define a threat when the

“Security Environment” is described. CC’s conceptual model

state that a threat agent wishes to “abuse and/or damage” assets.

In the AbstractPRM-package this is represented through the

reference chain ThreatAgent.GiveRiseTo.Includes.Target, which has

the range Asset. Hence, each AttackStep is associated to the Asset

it targets using the reference slot AttackStep.Target.

An AttackStep and Threat can either be possible or impossible to

accomplish, hence the attributes AttackStep.PossibleToAccomplish

and Threat.PossibleToAccomplish exist. A Threat does in addition

hold the attribute IsAttempted and IsRealized. Threat.IsAttempted

indicates if it is attempted by the threat agent or not;

Threat.IsRealized indicates if it is realized or not. The attribute

AttackStep.IsDetected indicates if an ongoing attack will be

detected, and AttackStep.LeavesAccountability says if the attack step

Paper A: A probabilistic relational model for security risk analysis

63

will lead to accountability, i.e. if the threat agent can be held

accountable for attempting it.

CC suggests that four aspects should be used to describe threat

agents. ThreatAgent.Resources is an aggregate of two of these –

“skills” and “resources”. CC also suggests that “motivation” and

“opportunity” could be used in addition to these. The threat

agent’s motivation can in this metamodel be expressed in terms

of the attribute Threat.IsAttempted. A motivating threat will,

ceteris paribus, have a higher probability of being attempted than

a threat that is not motivating. Opportunity is captured by the

attribute Threat.PossibleToAccomplish, which express the probability

that an attacker can realize the threat if this is attempted.

CC’s general conceptual model includes the concept of

countermeasures but does not differentiate among these with

regard to how they causally reduce the risk. Outside of its

conceptual model CC state that these can be seen as “Security

Objectives” which are achieved by meeting “Security Functional

Requirements”. The AbstractPRM-package defines the class

Countermeasure and further specialize this class to enable more

detailed quantification how countermeasures depend on each

other and how they influence risk. Five subclasses of

Countermeasure are defined: PreventiveCountermeasure (e.g. firewall),

DetectiveCountermeasure (e.g. intrusion detection system),

ReactiveCountermeasure (e.g. incident handling),

ContingencyCountermeasure (e.g. backups) and

AccountabilityCountermeasure (e.g. logging). In relation to CC’s

terminology these five types of countermeasures correspond to

classes of “Security Functional Requirements”. How these

casually reduce risk is described by the PRM’s probabilistic

dependency structure (cf. section 5.2).

Countermeasures can hold a value, and the class Countermeasure is

therefore a subclass of Asset, i.e. Countermeasure « Asset. In

addition to the inherited attribute ExpectedLoss which states value

of the Countermeasure, Countermeasure and its subclasses also have

the attribute Functioning. The attribute Countermeasure.Functioning

expresses if the Countermeasure is working as it should – the

countermeasure’s correctness in CC’s terminology. If a reactive

countermeasure is functioning it can respond to detected events.

Therefore ReactiveCoutermeasure also holds the attribute

Paper A: A probabilistic relational model for security risk analysis

64

ReactiveCoutermeasure.Activated which indicates if it is put into

effect or not.

Just as in CC, an Owner value Assets through the reference slot

Owner.Value. An Asset can in this model also be related to other

assets using the reference slot Asset.Association. The risk to assets

and owners is in the architecture metamodel represented by

Asset.ExpectedLoss and Owner.ExpectedLoss. Both

V(Asset.ExpectedLoss) and V(Owner.ExpectedLoss) are scalars that

express losses, e.g. monetary losses. The attribute

ThreatAgent.Resources has the domain of values {High, Medium,

Low} whose semantics is defined in ConcretePRM-packages. All

other attributes in the metamodel have the domain of values

{True, False}.

5.2 Probabilistic dependency

structure and specialization

constraints

As CC’s conceptual model, the PRM depicted in Figure 6

contains concepts that influence security risk. This metamodel is

in addition associated with a dependency structure which defines

how the attributes of these concepts influence each other. To

properly define a PRM it must be described how to derive the

parents Pa(X.A) of all attributes X.A in an instantiated model.

Attributes also need to be associated with a conditional

probability distribution P(X.A|Pa(X.A)).

Figure 6 shows the probabilistic dependency structure as solid

and dashed arcs spanning between attributes. An arc is solid

when the abstract package defines how parent-attributes should

be derived from an instance model, and dashed when it does

not. Hence, the slot chains that define dashed arcs must be

specified in packages that import the AbstractPRM-package, i.e.

in ConcretePRM-packages.

Parents are left undefined when the AbstractPRM-package’s

metamodel does not include the information required to

determine them. For example, a data backup for a data store

would be a typical ContingencyCountermeasure in an instance model,

and a data store would be a typical Asset. The dashed arc from

Paper A: A probabilistic relational model for security risk analysis

65

ContingencyCountermeasure.Functioning to Asset.ExpectedLoss then

implies that a functioning data backups influence the expected

losses of the data store. This dependency structure would be

reasonable if a model would instantiate an Asset that is a data

store, this Asset is associated with an instance of

ContingencyCountermeasure represent the data store’s data backup.

But, if the asset instead is an employee, a data backup is of little

help. There is however nothing in the AbstractPRM-package

that allows instance models to represent if the asset is a data

store, if the countermeasure is a backup-system, or if the

backup-system makes backups of the data store.

The concepts necessary to specify theories like these can

however be specified in ConcretePRM packages that specialize

the classes in the AbstractPRM-package. To do this a set of

asset-to-asset references (Asset.Association) should be used.

Chapter 6 shows an example of how this can be done in a

ConcretePRM-package. This ConcretePRM-package does for

instance say that the class Backup is a subclass of

ContingencyCountermeasure and that the class DataStore is as a

subclass of Asset. If these two are related with the asset-to-asset

reference DataStore.Has it specifies that Backup.Functioning is a

parent of DataStore.ExpectedLoss, i.e. that DataStore.ExpectedLoss

has parents DataStore.Has.Functioning.

Asset-to-asset references are used to define the slot chains that

make dashed arcs concrete (solid). For the rules dictating how

the attribute-parents can be specified, recall that parents to an

attribute X.A are defined in the form X.τ.B, where B ∈ A(X.τ).

The slot chain τ is here either empty, a single slot ρ or a sequence

of slots ρ1,…,ρk such that for all i, Range[ρi]=Dom[ρ(i+1)]. Also

recall that this AbstractPRM-package states that Asset can have

zero to many references to other Assets through the reference

slot Association. Concrete specializations of the classes in the

AbstractPRM-package can use refinements of the reference slot

Association to specify concrete attribute dependencies. A

refinement could for example be the reference slot

DataStore.Has, as in the example above.

Table 1 describes the parents of attributes in the AbstractPRM.

Here a2a is used to represent a chain of refined asset-to-asset

relationships, i.e. a chain of refined Association reference slots.

Paper A: A probabilistic relational model for security risk analysis

66

The range of the reference chain is in some cases constrained to

a specific subclass of asset. If this is the case the class’ name is

shown within parentheses at the end of the chain. Table 1 does

for example show that Asset.ExpectedLoss can have the parent

Asset.a2a.(ContingencyCountermeasure).Functioning. In a

ConcretePRM-package this can be used to associate a

DataStore.ExpectedLoss with a contingency countermeasure of

type Backup, as in the example above. The slot chain a2a would

in this case be the single reference Has, thus making

DataStore.Has.Functioning a parent of DataStore.ExpectedLoss. More

formally, if <AssociationRefinement> denotes a refinement of the

reference slot Asset.Association, then a chain of <

AssociationRefinement> reference slots is denoted as a2a.

This parent structure is defined to infer a value for

Owner.ExpectedLoss. This value will be the sum of expected losses

of the Assets that the Owner values. Asset.ExpectedLoss is caused by

Threats that are realized [21], and Threats.IsRealized can therefore

be defined as a parent of Asset.ExpectedLoss. As defined in [4], a

threat will be realized (Threat.IsRealized) if it is attempted

(Threat.IsAttempted) and if it is possible to succeed with

(Threat.PossibleToAccomplish). For Threat.PossibleToAccomplish to be

true, all AttackSteps included in the threat must be possible to

accomplish. The attack steps included in a threat thus

correspond to an attack path in an attack graph, and all these

attack steps must be possible to accomplish if the attack path

should be possible to accomplish.

AttackSteps can be associated to each other in a way similar to

the probabilistic attack graphs described in [35]. It can be

specified that accomplishment of one attack step influences the

probability that another attack step will be possible to

accomplish. This is specified using asset-to-asset relationships in

the metamodel. The probability that the included AttackSteps are

accomplished also depends on the Resources of the ThreatAgent

[21]. The attribute Threat.IsAttempted is influenced by deterrent

factors [26]: the personal risk associated with attempting the

attack and the difficult of accomplishing with it. To represent

this Threat.IsAttempted has parents Threat.PossibleToAccomplish and

the OR-aggregate of LeavesAcountability-attributes in included

AttackStep-objects.

Paper A: A probabilistic relational model for security risk analysis

67

Table 1. Attributes in the AbstractPRM-package are here
shown together with the slot chains defining their parents.
Owner.ExpectedLoss does for example have the parent(s)
Owner.Values.ExpectedLoss. A chain of refined reference
slots of Asset.Association is here denoted a2a.

Attribute

Owner.ExpectedLoss

Owner.Value.ExpectedLoss

Asset.ExpectedLoss

Asset.a2a.Target-1.Includes-1.IsRealized

Asset.a2a.(ContingencyCountermeasure).Functioning

Threat.IsRealized

Threat.PossibleToAccomplish

Threat.IsAttempted

Threat.PossibleToAccomplish

Threat.Includes.PossibleToAccomplish

Threat.IsAttempted

Threat.Includes.LeavesAccountability

Threat.PossibleToAccomplish

AttackStep.PossibleToAccomplish

AttackStep.Target.a2a.Target-1.PossibleToAccomplish

AttackStep.Target.a2a.(PreventiveCountermeasure).Functioning

AttackStep.Target.a2a.(ReactiveCountermeasure).Activated

AttackStep.Includes-1.GiveRiseTo-1.Resources

AttackStep.LeavesAccountability

AttackStep.a2a.(AccountabilityCountermeasure).Functioning

AttackStep.Detected

AttackStep.a2a.(DetectiveCountermeasure).Functioning

ReactiveCountermeasure.Activated

ReactiveCountermeasure.Functioning

ReactiveCountermeasure.a2a.Target-1.Detected

Countermeasure.Functioning

Countermeasure.Target-1.PossibleToAccomplish

As in [26,36,37], an AttackStep that targets a Countermeasure will

do so to disable it. Hence, Countermeasure.Functioning has the

parent Countermeasure.Target-1.PossibleToAccomplish. Functioning

countermeasures can lower Owner.ExpectedLoss, but depending on

their class they will do so differently. The dashed arcs in Figure 6

show which potential parents there could be in ConcretePRM.

One internal dependency exists among the subclasses of

countermeasures. Time-based security prescribe that one way of

preventing attacks are to detect them and trigger reactive

Paper A: A probabilistic relational model for security risk analysis

68

measure to mitigate them [48]. ReactiveCountermeasure.Activated can

therefore be influenced by AttackStep.Detected.

In this model the logical operations AND, OR and the

arithmetic operation SUM are used to aggregate multiple parents

into one value. The conditional probability distribution

Threat.IsAttempted is for example specified for the OR-aggregate

of all Threat.Includes.LeavesAccountability-parents (cf. Figure 6). The

aggregate of the logical operations AND and OR is here defined

as False for an empty set of parents. Also let

AttackStep.PossibleToAccomplish be False if

Pa(AttackStep.PossibleToAccomplish) ∈ At(ThreatAgent) is the empty

set.

The attributes AssetExpectedLoss and Owner.ExpecredLoss are

defined as value tables with a default value of zero. All

Countermeasure share the same conditional distribution for the

attribute Functioning. Figure 6 describes this conditional

probability, as well as all other conditional probabilities. These

may, and ought to, be specialized in concrete subclasses since

more accurate tables can be defined when classes are more

concrete. In concrete specializations the parents of attributes

targeted by dashed arcs may change as new parents are defined.

In these cases the conditional probability distribution must be

specialized in the subclass.

6 A ConcretePRM-package
This chapter exemplifies how a Concrete PRM can be created

using the AbstractPRM-package presented in chapter 5. This is

done by defining subclasses to those that exist in the

AbstractPRM, by specializing the reference slots and attributes

of these subclasses, and concretizing the probabilistic model

using asset-to-asset references. No operations except these three

are needed to create a ConcretePRM-package.

Paper A: A probabilistic relational model for security risk analysis

69

SubstationCommunication

DataFlow

ExpectedLoss

Allow

OfficeNetwork

CorporateNetwork

ExpectedLoss

RemoteDesktop

DataFlow

ExpectedLoss

CorporateFirewall

Firewall

Functioning

ExpectedLoss

InsecureZone

SubstationLAN

ProcessNetwork

ExpectedLoss

SecureZone

ServiceGateway

Host

ExpectedLoss

VNCInterface

Service

ExpectedLoss

TerminalServices

Service

ExpectedLoss

Execute

Execute

BelongTo

BelongTo

Allow

ControllerSettings

DataStore

ExpectedLoss

Contain

Server

RealTimeScanner

MalwareScanner

Functioning

ExpectedLoss

VirusVault

RemovalFunctionality

Functioning

Activated

ExpectedLoss

Heals

Monitor

Logs

AccessLogs

Functioning

ExpectedLoss
Has

EmbeddedController

Host

ExpectedLoss

Client

ModemLAN

ProcessNetwork

ExpectedLoss

GatewayFirewall

Firewall

Functioning

ExpectedLoss

ServerRemoteControl

DataFlow

ExpectedLossClient

Allow

SecureZone

SuppliersLAN

Zone

ExpectedLoss

Internet

PublicNetwork

ExpectedLoss

RemoteService

DataFlow

ExpectedLoss

Allow

Server

Client

InsecureZone

ControlSystemServer

Service

ExpectedLoss

StationController

Host

ExpectedLoss

Execute

BelongTo

EquipmentSettings

DataStore

ExpectedLoss

Contain

ProcessModel

DataStore

ExpectedLoss

Contain

ReplicatedDatabase

Backup

Functioning

ExpectedLoss

Has

SubstationEngineers

OrganizationlFunction

ExpectedLoss

Used by

ConnectToTeminalServices

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

AccessSuppliersLAN

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessInternet

AccessPublicNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessOfficeNetwork

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToVNCInterface

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

ExplVulnInVNCInterface

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInTerminalServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToControlSysServ

er

ConnectToPossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInControlServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfGatewayFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfigureCorpFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnStationContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnServiceGateway

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

Supplier

OrganizationlFunction

ExpectedLoss

ExecuteMalwOnEmbContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSupplierInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSSEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

AccessSubstationLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessModemLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

HistoricalData

DataStore

ExpectedLoss

Contain

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Used by

Target

FieldEngineers

OrganizationlFunction

ExpectedLoss

MakeFieldEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Used by

Used by

Used by

Used by

Has

ControlCenterNetwork

ProcessNetwork

ExpectedLoss

AccessCCNetwork

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Server

Client

Figure 7. These concrete classes are subclasses of those depicted

in Figure 6 and concretize their attribute dependencies to create a

metamodel over malware attacks that cause loss of data. The

conditional probabilities for some attributes are inherited from

their superclass and can be found in Figure 6. Those that are

specialized are shown in this figure. Loss values (marked with

question marks) are detailed in the instance model.

Paper A: A probabilistic relational model for security risk analysis

70

The ConcretePRM-package described in this chapter is only an

illustrative example of how a Concrete-PRM package can be

constructed. Hence, its structure and conditional probabilities

have not been validated. The example shows a simple

metamodel that can be used to analyze risks associated with

malware attacks that cause loss of data. Its description is divided

in four sections, each describing a part of the Concrete-PRM

package. The first three sections depict different parts of the

diagram in Figure 7, namely: “Firewalls, services and network

zones”, “Malware and anti-malware”, and “Social engineering

and backup data”. The fourth part describes subclasses of

Threats and ThreatAgents and relates these to the classes depicted

in Figure 7. The fourth part is illustrated in Figure 8.

When reference slots of type Asset.Association inherited from the

AbstractPRM-package are refined they will be given descriptive

names, e.g. DataStore.Has. When it is necessary to distinguish

between two reference slots refinements of other types of

reference slots we will use an alphabetical suffix (e.g. X.TargetA

and Y.TargetB).

6.1 Firewalls, services and network

zones

The primary purpose of firewalls is to control access to network

addresses. They do so by blocking unwanted data flows from

adjacent zones, and allow those that are wanted. With a

protection scheme following the principle “deny by default”, a

Firewall will allow a number of Data flows to pass into the secure

Zone from other Zones. In this ConcretePRM a Firewall holds the

reference slots Allow, SecureZone and InsecureZone, where

Range(Firewall.Allow)=DataFlow, Range(Firewall.SecureZone)=Zone

and Range(Firewall.InSecureZone)=Zone. The SecureZone and

InsecureZone here refer to the zones that are directly separated by

the firewall.

A Zone can be targeted in the attack step AccessZone. Three

subclasses of Zone are represented in the PRM: PublicNetwork,

CorporateNetwork and ProcessNetwork. For these three the attack

step AccessZone is specialized into AccessPublicNetwork,

Paper A: A probabilistic relational model for security risk analysis

71

AccessCorporateNetwork and AccessProcessNetwork. This way their

conditional probability distributions can be specialized.

A DataFlow is initiated from one Zone and is established to a

Service. It has the reference slots Client and Server where

Range(DataFlow.Client)=Zone and Range(DataFlow.Server) is Zone. A

Service belongs to a Zone with the reference slot BelongTo, where

Range(Service.BelongTo)=Zone.

ConnectTo is an attack step that targets a Service, i.e. ConnectTo «

Attack step and Range(ConnectTo.Target)=Service. A Firewall will

prevent Services in the secure Zone from unauthorized DataFlows

where the client is in an insecure Zone. Hence, Firewall «

PreventiveCountermeasure and ConnectTo.PossibleToAccomplish have

parents ConnectTo.TargetA.BelongTo-1.SecureZone-1.Functioning and

ConnectTo.Target.BelongTo-1.SecureZone-

1.InSecureZone.Target.PossibleToAccomplish.

Table 2. Parents to attributes in the Firewall part of the
ConcretePRM-package.

ConnectTo.PossibleToAccomplish

ConnectTo.TargetA.BelongTo.Target.PossibleToAccomplish

ConnectTo.TargetA.Server-1.Client.TargetB-1.PossibleToAccomplish

ConnectTo.TargetA.BelongTo.SecureZone-1.InsecureZone.Target.PossibleToAccomplish

ConnectTo.TargetA.BelongTo. SecureZone-1.Functioning

Firewall.Functioning

Firewall.Target-1.PossibleToAccomplish

Reconfigure.LeavesAccountability

Reconfigure.Target.Has.Functioning

A firewall will not prevent connection attempts from the zone

where the service belongs, or prevent a connection attempt that

uses a data flow which is allowed by the firewall. To express this

ConnectTo.PossibleToAccomplish has the parents:

ConnectTo.TargetA.BelongTo.BelongTo-1.TargetB-1.PossibleToAccomplish

and ConnectTo.TargetA.Server-1.Client.Target-1.PossibleToAccomplish.

Firewalls must function to block unauthorized data flows, i.e

Firewall.Functioning=True. The attack step Reconfigure target a

Firewall and will therefore disable them if accomplished. Firewall

may refer to AccessLogging with the reference slot Firewall.Has.

The class AccessLogging will influence the probability that

Reconfigure leaves accountability. To specify this

Paper A: A probabilistic relational model for security risk analysis

72

Reconfigure.LeavesAccountability have parents

Reconfigure.Target.Has.Functioning.

6.2 Malware and anti-malware

Services can be exploited to execute malware on the hosts that

run them. ExploitVulnerability has the reference slot TargetB,

where Range(ExploitVulnerability.TargetB)=Service, and Host have

the reference slot Host.Run where Range(Host.Run)=Service. The

reference slots ExecuteMalware.Target and MalwareScanner.Monitor

have the range Host.

A service’s vulnerability can only be exploited if a connection

can be established to it. Hence, ExecuteMalware.Target.Run.TargetB-

1.PossibleToAccomplish is a parent of

ExecuteMalware.PossibleToAccomplish. The attack step

ExecuteMalware can be detected if the host is monitored with a

MalwareScanner. If detected, ExecuteMalware.PossibleToAccomplish

will be influenced by removal functionality on the host

RemovalFunctionality.Activated. The rules for these dependency

relationships are shown in Table 3.

Table 3. Parents to attributes in the Anti-malware part of
the PRM.

ExploitVulnerability.PossibleToAccomplish

ExploitVulnerability.TargetB.TargetA-1.PossibleToAccomplish

ExecuteMalware.PossibleToAccomplish

ExecuteMalware.Target.Run.TargetB-1.PossibleToAccomplish

ExecuteMalware.Target.Heal-1.Activated

ExecuteMalware.Detected

 ExecuteMalware.IsTargetIn-1.Monitor-1.Functioning

RemovalFunctionality.Activated

RemovalFunctionality.Functioning

RemovalFunctionality.Heals.Target-1.Detected

6.3 Social engineering and backup

data

In addition to technical concepts, such as firewalls and network

addresses, the AbstractPRM-package allows organizational and

human elements of security to be included in ConcretePRM-

packages. In this example (cf. Figure 7), the class

OrganizationalFunction represents a role within the organization.

Paper A: A probabilistic relational model for security risk analysis

73

OrganizationalFunction has the reference slots Use and CoveredBy,

where Range(Use)=Host and Range(CoveredBy)=AwarenessProgram.

An OrganizationalFunction can be targeted by the attack step

MakeUserInstallExecutable, so

Range(MakeUserInstallExecutable.Target)=

OrganisationalFunction. The attribute

ExecuteMalware.PossibleToAccomplish is dependent on

whether it is possible to make the targeted host’s users install an

executable in a host. This in turn is influenced by whether this

person is covered by a security awareness program.

Host has the reference slot Contain with range DataStore. The class

DataStore has the reference slot Has, where

Range(DataStore.Has)=Backup. The expected loss of a data store is

influenced by if its backups are functioning. This value can for

example represent the monetary loss associated with the

conditions in parent-attributes. If general loss values can be

identified, and these are expected to be as accurate as those that

can be provided by the person applying the ConcretePRM-

package, the loss values associated with successful attacks can be

specified in the ConcretePRM-package. In this ConcretePRM-

package the class DataStore is however vaguely defined. The

monetary loss associated with the destruction of different

DataStore-objects is this example collected together with the

instance model instead. The question marks in the definition of

this DataStore.ExpectedLoss mark that this information should be

provided when the architecture model is instantiated.

Table 4 details the rules to determine parents of this attribute as

well as other attributes in this part of the ConcretePRM-package.

The parent DataStore.Contain-1.Target-1.Includes-1.IsRealized refers to

the Threat which causes the loss and is explained in more detail in

section 6.4.

Paper A: A probabilistic relational model for security risk analysis

74

Table 4. Parents to attributes in the social engineering part
of the PRM.

DataStore.ExpectedLoss

DataStore.Has.Functioning

DataStore.Contain-1.Target-1.Includes-1.IsRealized

ExecuteMalware.PossibleToAccomplish

ExecuteMalware.IsTargetIn-

1.UsedBy.IsTargetIn.PossibleToAccomplish

MakeUserInstallExecutable.PossibleToAccomplish

MakeUserInstallExecutable.IsTargetIn-1.CoveredBy.Functioning

DataStore.Contain-1.Target-1.Includes-1.IsRealized

6.4 Threats and Threat Agent

The AbstractPRM-package allows a ConcretePRM-package to

specialize ThreatAgent and Threat into subclasses. ThreatAgent can

be specialized to define the probability distribution of the

attribute Resources, and to define the semantics of its states. The

class Threat can be specialized to: define Threat.IsRealized as a

parent to some Asset.ExpectedLoss, to refine the reference slot

Threat.GiveRiseTo-1, to refine the reference slot Threat.Includes, and

to specialize the conditional probability of Threat.IsAttempted.

Subclasses of Threat and ThreatAgent and how these relate to

other classes in the ConcretePRM package is shown in Figure 8.

The conditional probabilities for the IsAttempted-attributes here

represent the probability that an attack will be attempted over

the duration of one year.

Paper A: A probabilistic relational model for security risk analysis

75

Host << Asset ExecuteMalware << AttackStep

Target

Contain

DataStore << Asset

ExpectedLoss

1

0..*

MakeUserInstallExecutable <<

AttackStep

Reconfigure << AttackStep

Execute << AttackStep

ExpoloitVulnerability <<

AttackStep
Includes

Includes

Includes

Includes

AccessZone << AttackStep

Includes

Includes

DataDestroyed << Threat

PossibleToAccomplish

IsAttempted

IsRealized
OR

SocialEngineering <<

DataDestroyed <<Threat

PossibleToAccomplish

IsAttempted

IsRealized

Includes

Includes

NetworkAttack <<

DataDestroyed <<Threat

PossibleToAccomplish

IsAttempted

IsRealized

Includes

IncludesIncludes

Includes

1

1

0..*

1

1
1

1..*

1

1

Outsider << ThreatAgent

GiveRiseTo
1

1..*

OR(Includes.LeavesAccountability) T T F F

NetworkAttack.PossibleToAccomplish T F T F

True 0.2 0.1 0.5 0.3

False 0.8 0.9 0.5 0.7
OR(Includes.LeavesAccountability) T T F F

SocialEngineering.PossibleToAccomplish T F T F

True 0.02 0.01 0.10 0.03

False 0.98 0.99 0.90 0.97

Includes 1

1

Resources High 0.05

Medium 0.20

Low 0.75

1..*

1..*

1..*

1..*

1..*

1..*

0..*

0..*

0..*

0..*

0..*

0..*

1..*

OR(DataStore.Contain^-1.Target^-1.Includes^-1.IsRealized)

OR(DataStore.Has.Functioning) T F T F

Loss ? ? 0 0

T F

0..*
0..*0..*

0..*

Figure 8. Threats and ThreatAgent in the ConcretePRM-
package. The refined range of the Includes-slot in
SocialEngineering and NetworkAttack is here defined
together with their multiplicities. The figure also shows
specialized probability distributions and that
DataDestoryed.IsRealized is a parent to
DataStore.ExpectedLoss. Attributes of AttackStep-
specializations and associated attribute dependencies is not
shown in this figure.

DataDestoroyed is a subclass of Threat. The attribute

DataStore.ExpectedLoss has parents DataStore.Store-1.Target-1.Include-

1.IsRealized, i.e. if this threat is realized DataStore.ExpectedLoss is

influenced. We also let Outsider be a subclass of ThreatAgent and

Outsider.GiveRiseTo be refined so that Range(Outsider.GiveRiseTo)=

DataDestroyed. The probability distribution for Outsider.Resources is

shown in Figure 8 and its states are defined as: (High) a

professional cyber-criminal spending up to one week, (Medium) a

professional cyber-criminal spending up to one hour, (Low) a

beginner spending one hour.

To refine the AttackSteps a Threat might include we let

NetworkAttack and SocialEngineering be two subclasses of

Paper A: A probabilistic relational model for security risk analysis

76

DataDestroyed, i.e. NetworkAttack « DataDestroyed and

SocialEngineering « DataDestroyed. Figure 8 specifies the conditional

probabilities for IsAttempted for these two threats. We let the

range of SocialEngineering.Includes and NetworkAttack.Includes be

defined as in Figure 8. These refinements do for instance say

that NetworkAttack.Includes may refer to any number of

Reconfigure-instances, but not to an instance of

MakeUserInstallExecutable.

7 Instance model and

security risk analysis
The AbstractPRM-package provides a basis for creating

metamodels that supports probabilistic inference of security risk.

This chapter exemplifies how inference is supported by applying

the ConcretePRM-package described in chapter 6 to a case

study.

The case study and the resulting instance model are described in

section 7.1. In section 7.2 it is shown how probabilistic

reachability analysis can be performed on the instance model.

This method of analysis is similar to the reachability analysis

performed on attack graphs and produce probabilities on the

possibility to accomplish different attack steps. The

AbstractPRM-package does in addition to this also allow

inference of expected loss. Section 7.3 describe how expected

loss can be inferred from instance models that instantiate

ConcretePRM-packages.

7.1 Case study

The case study was carried out at an electric power utility in

Sweden during November 2009. The scope of this study was one

of the critical substations within the utility. This substation was

modeled with ConcretePRM-package described in chapter 6. To

create the instance model, interviews with system administrators

were conducted and system documentation was investigated.

To create the instance model subclasses of Asset and reference

slots where both range and target is an Assets (i.e. refinements of

Asset.Association) must be specified. This, together with loss

Paper A: A probabilistic relational model for security risk analysis

77

values of different DataStore-objects, was the only information

collected in the case study. In Figure 9 white boxes represent the

objects that instantiate a subclass of Asset. The dashed lines

between these white boxes are the instantiated reference slots.

Four relevant Zones are located outside of the substation. The

OfficeNetwork is the insecure side of the CorporateFirewall. The

CorporateFirewall allow the data flow RemoteDesktop to pass

through from the OfficeNetwork to the service TerminalServices, and

the data flow SubstationCommunication from the zone

ControlCenterNetwork to reach ControlSystemServer. The

GatewayFirewall is connected to the Internet and allow data to

pass from both the OfficeNetwork and the SuppliersLAN.

Within the substation there are two process networks: the

SubstationLAN and the ModemLAN. The services

ControlSystemServer and TerminalServices belong to the

SubstationLAN. The ControlSystemServer is executed by the host

StationController and is the server for SubstationCommunication. The

StationController contain a ProcessModel. This data store has a

backup – the ReplicatedDatabase. The service TerminalServices is

executed by the host ServiceGateway and is the server for the data

flow RemoteDesktop. The ServiceGateway contains ControllerSettings

and is used by SubstationEngineers to reconfigure information

technology within the substation. The ServiceGateway is monitored

by a RealTimeScanner and a VirusVault can heal it if malware is

found on it. The service VNCInterface belongs to the

ModemLAN and is executed by the host EmbeddedController. This

EmbeddedController contains another data store – EquipmentSettings.

In a BackupCabinet there are backups of both EquipmentSettings

and ControllerSettings.

Three organizational functions use hosts within the substation:

Supplier, FieldEngineers and SubstationEngineers. The

EmbeddedController is used by Supplier and FieldEngineers; the

ServiceGateway is used by SubstationEngineers; the StationController is

used by SubstationEngineers and FieldEngineers. None of these are

covered by an awareness program.

The tables in Figure 9 present the loss (in Swedish krona, SEK)

that would be experienced if the data stores would be destroyed.

These state the loss under the conditions that a backup exist, and

Paper A: A probabilistic relational model for security risk analysis

78

that it does not exist. As can be seen from Figure 9 the impact of

backups on the expected loss is substantial for the attributes

ControllerSettings.ExpectedLoss and ProcessModel.ExpectedLoss. The

impact from a backup on the attribute

EquipmentSettings.ExcepectLoss is less, both in relative and absolute

terms. This is due to the complicated nature of these settings and

the manual labor required to restore them from a backup.

The AttackSteps relevant for this architecture model can be

derived and instantiated based on the Asset-objects and the

reference slots between Asset-objects. The multiplicities

associated with reference slots constrain the instance model, and

provide support for deriving the attack steps that should be

included in an instantiation. As suggested by the AbstractPRM,

the AttackStep-subclasses in the ConcretePRM-package refer to

exactly one Asset with the reference slot Target. This makes it

possible to identify and instantiate the AttackStep-objects that an

instantiated Asset-subclass should be associated to – for each

Asset-object in the instance model, an object of each class in

Range(Asset.Target-1) should be added and referred. Hence, based

on instantiations of Assets and asset-references, associated

AttackStep instances can be derived. The attack steps associated

with this architecture models are colored grey in Figure 9.

With this instance model as a basis, different architectural

changes can be assessed in terms of their impact on reachability

and expected loss. The ConcretePRM-package used in this case

study specifies that only organizational functions that use a host

can be made to install executables on them. It also specifies that

if it is more difficult to make users install executables if their

organizational functions are covered by awareness programs.

Two architectural changes were assessed in this case study: 1) the

impact of making sure that substation engineers do not use the

embedded controller and 2) covering substation engineers with

an awareness program. Objects instantiating Owner, Threat and

ThreatAgent are not shown in Figure 9. These are instead

introduced in section 7.2 and 7.3, together with the analysis.

Paper A: A probabilistic relational model for security risk analysis

79

Has

SubstationCommunication

DataFlow

ExpectedLoss

Allow

OfficeNetwork

CorporateNetwork

ExpectedLoss

RemoteDesktop

DataFlow

ExpectedLoss

CorporateFirewall

Firewall

Functioning

ExpectedLoss

InsecureZone

SubstationLAN

ProcessNetwork

ExpectedLoss

SecureZone

ServiceGateway

Host

ExpectedLoss

VNCInterface

Service

ExpectedLoss

TerminalServices

Service

ExpectedLoss

Execute

Execute

BelongTo

BelongTo

Allow

ControllerSettings

DataStore

ExpectedLoss

Contain

Server

RealTimeScanner

MalwareScanner

Functioning

ExpectedLoss

VirusVault

RemovalFunctionality

Functioning

Activated

ExpectedLoss

Heals

Monitor

Logs

AccessLogs

Functioning

ExpectedLoss
Has

EmbeddedController

Host

ExpectedLoss

Client

ModemLAN

ProcessNetwork

ExpectedLoss

GatewayFirewall

Firewall

Functioning

ExpectedLoss

ServerRemoteControl

DataFlow

ExpectedLossClient

Allow

SecureZone

SuppliersLAN

Zone

ExpectedLoss

Internet

PublicNetwork

ExpectedLoss

RemoteService

DataFlow

ExpectedLoss

Allow

Server

Client

InsecureZone

ControlSystemServer

Service

ExpectedLoss

StationController

Host

ExpectedLoss

Execute

BelongTo

EquipmentSettings

DataStore

ExpectedLoss

Contain

ProcessModel

DataStore

ExpectedLoss

Contain

ReplicatedDatabase

Backup

Functioning

ExpectedLoss

Has

SubstationEngineers

OrganizationlFunction

ExpectedLoss

Used by

ConnectToTeminalServices

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

AccessSuppliersLAN

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessInternet

AccessPublicNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessOfficeNetwork

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToVNCInterface

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

ExplVulnInVNCInterface

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInTerminalServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToControlSysServer

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInControlServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfGatewayFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfigureCorpFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnStationContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnServiceGateway

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

Supplier

OrganizationlFunction

ExpectedLoss

ExecuteMalwOnEmbContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSupplierInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSSEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

AccessSubstationLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessModemLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Target

Used by

Target

FieldEngineers

OrganizationlFunction

ExpectedLoss

MakeFieldEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Used by

Used by

Used by

Used by

ControlCenterNetwork

ProcessNetwork

ExpectedLoss

AccessCCNetwork

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Server

Client

OR(DataStore.Contain -̂1.Target -̂1.Includes -̂1.IsRealized)

OR(DataStore.Has.Functioning) T F T F

Loss 500 000 750 000 0 0

T F

BackupCabinets

Backup

Functioning

ExpectedLoss

Has

OR(DataStore.Contain -̂1.Target -̂1.Includes -̂1.IsRealized)

OR(DataStore.Has.Functioning) T F T F

Loss 10 000 1 500 000 0 0

T F

OR(DataStore.Contain -̂1.Target -̂1.Includes -̂1.IsRealized)

OR(DataStore.Has.Functioning) T F T F

Loss 10 000 1 500 000 0 0

T F

Figure 9. The case study represented through the
ConcretePRM depicted in Figure 7. AttackStep-instances
(toned gray) can be derived from the ConcretePRM-
package together with their references.

Paper A: A probabilistic relational model for security risk analysis

80

7.2 Probabilistic reachability

analysis

The dependencies between objects of class Countermeasure and

AttackStep is given by an instance model. These relationships

make it possible to create a probabilistic graph for reachability

analysis where the possibility. This reachability analysis assesses

the possibility to accomplish different attack steps targeting

assets in the instance model.

If I is the architecture instantiation of a ConcretePRM, let IRA

include all objects in I that are of class: AttackStep,

PreventiveCounteremeasure, DetectiveCountermeasure or

ReactiveCountermeasure, including their attributes and internal

attribute dependencies. Also let the objects T and TA be

included in IRA, where T is an instance of a subclass to Threat (T

∈ C[Threat]) and TA be an instance of a subclass to ThreatAgent

(TA ∈ C[ThreatAgent]). Let T.Includes point to all AttackStep-

objects in its range, and let TA.GiveRiseTo point to T.

This yields a graph, IRA, which can be used to infer the

probabilities of attributes PossibleToAccomplish and Detected in all

instances of AttackStep. This inference is performed under the

assumption that all attack steps are attempted.

Figure 10 depicts the graph IRA, excluding TA and T, for the

instance model I in Figure 9. Let T be of class DataDestroyed, and

TA be of class Outsider. An instance of DataDestroyed

(InstanceOfTA) then refers to all AttackStep-objects in Figure 9

with the reference slot Includes, and an instance of Outsider

(InstanceOfT) refers to the instance of DataDestroyed.

The probabilistic model associated with IRA can for example be

used to infer if attack steps are possible to accomplish given

different TA.Resources, or to infer which attack steps that can be

accomplished when the attributes of attack steps and

countermeasures are set to specific values, i.e. evidence has been

provided on the state of these attributes. In Figure 10 the

reachability analysis has been performed under the assumption

that threat agent has medium resources, i.e.

TA.Resources=Medium. Figure 10 does for instance show that

P(ExecuteMalwOnEmbContr.PossibleToAccomplish)=50 % under

Paper A: A probabilistic relational model for security risk analysis

81

these conditions. It also shows that the possibility to exploit

vulnerabilities in the services is significantly smaller than the

possibility to make users install executables on hosts.

Two architectural modifications were assessed in this case study.

The first architectural modification was to make sure that

substation engineers do not use the embedded controller.

This would according to the ConcretePRM-package reduce

P(ExecuteMalwOnEmbContr.PossibleToAccomplish) from 50 % to 37

%. The second modification, covering substation engineers in an

awareness program, would reduce

P(MakeSSEngInstallExec.PossibleToAccomplish) from 20 % to 10%.

This would in turn reduce

P(ExecuteMalwOnServiceGateway.PossibleToAccomplish) to 10 %,

P(ExecMalwOnStationContr.PossibleToAccomplish) to 28 % and

P(ExecuteMalwOnEmbContr.PossibleToAccomplish) to 44 % . The

impact of architectural changes like these on reachability is

assessed by adding or removing assets and asset-to asset

relationships in the instance model.

Paper A: A probabilistic relational model for security risk analysis

82

CorporateFirewall

Firewall

Functioning

ExpectedLoss

RealTimeScanner

MalwareScanner

Functioning

ExpectedLoss

VirusVault

RemovalFunctionality

Functioning

Activated

ExpectedLoss

GatewayFirewall

Firewall

Functioning

ExpectedLoss

ConnectToTeminalServices

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessSuppliersLAN

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessInternet

AccessPublicNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessOfficeNetwork

AccessCorporateNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToVNCInterface

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

ExplVulnInVNCInterface

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInTerminalServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ConnectToServer

ConnectTo

PossibleToAccomplish

IsDetected

LeavesAccountability

ExploitVulnInControlServ

ExploitVulnerability

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfGatewayFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ReconfigureCorpFirewall

Reconfigure

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnStationContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecMalwOnServiceGateway

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

ExecuteMalwOnEmbContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSupplierInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSSEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessSubstationLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessModemLAN

AccessProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeFieldEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

AccessCCNetwork

ProcessNetwork

PossibleToAccomplish

IsDetected

LeavesAccountability

True 0.86

False 0.14

True 0.9

False 0.1

True 1

False 0

True 0.1

False 0.9

True 0.1

False 0.9

True 0.9

False 0.1

True 0.01

False 0.99

True 0.03

False 0.97

True 0.1

False 0.9

True 0.01

False 0.99

True 0.003

False 0.997

True 0.2

False 0.8

True 0.21

False 0.79

True 0.86

False 0.14

True 0.9

False 0.1

True 0.48

False 0.52

True 0.9

False 0.1

True 0.54

False 0.46

True 0.9

False 0.1

True 0.36

False 0.64

True 0.5

False 0.5

True 0.01

False 0.99

True 0.01

False 0.99

True 0.2

False 0.8

True 0.2

False 0.8

True 0.12

False 0.88

Figure 10. Reachability graph comprising of attack steps,
preventive countermeasures, detective countermeasures
and reactive countermeasures along with their attribute-
relationships. Here Adversary.Resources (not shown in the
figure) is set to medium.

7.3 Loss expectancy

The method described in section 7.2 allows inference of the

probability that attack steps are possible to accomplish under the

assumption that the threat agent attempts to perform all attack

Paper A: A probabilistic relational model for security risk analysis

83

steps. Although the probabilities that are inferred with this

analysis method provide an indication of security, just as

reachability analysis performed on attack graphs and attack trees,

it does not capture security risk (Owner.ExpectedLoss). If risk is the

variable sought, it should also be assessed if the threats will be

attempted (Threat.IsAttempted) and threats should be related to

the losses they cause when realized. Countermeasures that deter

threat agents from attempting attacks

(AccountabilityCountermeasure) and countermeasures that limit the

loss (ContingencyCountermeasure) are also of relevance when this is

assessed. By instantiating the threats one wish to include in the

analysis these factors can be included in the analysis. The

expected loss from different threats can be assessed. In this case

study we instantiated objects the classes of NetworkAttack and

SocialEngineering.

In Figure 11 two Threat-instances are shown. In the first Threat1

includes MakeSSEngInstallExec and ExecMalwOnServiceGateway; in

the second Threat2 includes MakeSSEngInstallExec and

ExecMalwOnStationContr. For each plausible instance like these,

the probability P(SocialEngineering.IsRealized) can be inferred and

the value for the expected losses associated with different assets

can be calculated. The probabilistic dependency structure infers

the expected losses 619 SEK and 1385 SEK for these two

threats.

In this case study 17 different threats were found relevant for the

substation in question. Six are of the class SocialEngineering and

eleven of the class NetworkAttack. Table 5 and Table 6 list these

together with the expected losses associated with them. Creating

the object ElectricUtility of class Owner and referring this to all

DataStore-instances aggregates these losses to the attribute

ElectricUtility.ExpectedLoss.

If the architecture is changed so that substation engineers do not

use the embedded controller this influences the third threat (T3).

T3 would in this case be associated with an expected loss of

zero. Covering substation engineers in an awareness program

would influence threat one (T1), two (T2) and three (T3). The

expected losses from these threats would be reduced to 390

SEK, 689 SEK and 2275 SEK respectively. With these

predictions as a basis, the first architectural change lowers

Paper A: A probabilistic relational model for security risk analysis

84

expected losses by 4573 SEK and the second alternative would

reduce losses by SEK 3224.

SocialEngineer

Outsider

Resources

ServiceGateway

Host

ExpectedLoss

ControllerSettings

DataStore

ExpectedLoss

Contain

RealTimeScanner

MalwareScanner

Functioning

ExpectedLoss

VirusVault

RemovalFunctionality

Functioning

Activated

ExpectedLoss

Heals

Monitor

SubstationEngineers

OrganizationlFunction

ExpectedLoss

Used by

ExecMalwOnServiceGateway

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSSEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

True 0.093

False 0.907

GiveRiseTo

Threat1

SocialEngineering

PossibleToAccomplish

IsAttempted

IsRealized

Includes

Includes

SocialEngineer

Outsider

Resources

StationController

Host

ExpectedLoss

Contain

SubstationEngineers

OrganizationlFunction

ExpectedLoss

Used by

ExecMalwOnStationContr

ExecuteMalware

PossibleToAccomplish

IsDetected

LeavesAccountability

MakeSSEngInstallExec

MakeUserInstallExecutable

PossibleToAccomplish

IsDetected

LeavesAccountability

Target

Target

GiveRiseTo

Threat2

SocialEngineering

PossibleToAccomplish

IsAttempted

IsRealized

Includes

Includes

ProcessModel

DataStore

ExpectedLoss

ReplicatedDatabase

Backup

Functioning

ExpectedLoss

Has

True 0.6

False 0.4

True 0.9

False 0.1

Value 1385

True 0.9

False 0.1

True 0.9

False 0.1

True 0.48

False 0.52True 0

False 1

True 0.021

False 0.979

True 0.004

False 0.996

True 0.075

False 0.925

High 0.05

Medium 0.20

Low 0.75

Value 619

True 0.168

False 0.832

True 0.6

False 0.4

True 0.54

False 0.44

True 0.009

False 0.981

True 0.024

False 0.976

True 0

False 1

High 0.05

Medium 0.20

Low 0.75

True 0.168

False 0.832

True 0.168

False 0.832

True 0.168

False 0.832

Has

BackupCabinets

Backup

Functioning

ExpectedLoss

True 0.9

False 0.1

Figure 11. Example of instantiated SocialEngineering-
threats that corresponds to Threat1 and Threat2. Only
those objects that are of relevance to these threats are
included in the figure.

Paper A: A probabilistic relational model for security risk analysis

85

Table 5. Instantiations of SocialEngineering and associated
expected loss. An X denotes that the attack step is included
in the threat.

AttackStep\Threat T1 T2 T3 T4 T5 T6

MakeSSEngInstallExec ● ● ●

MakeSupplierInstallExec ●

MakeFieldEngInstallExec ● ●

ExecMalwOnServiceGateway ●

ExecuteMalwOnStationContr ● ●

ExecuteMalwareOnEmbContr ● ● ●

Expected loss ($) 620 1385 4573 689 1385 4573

Table 6. Possible references and assessed instantiations of
NetworkAttack. An X denotes that the attack step is
included in the threat.

AttackStep\Threat T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

AccessOfficeNetwork ● ● ● ●

AccessCCNetwork ● ●

AccessSubstationLAN ● ●

AccessSuppliersLAN ●

AccessInternet ● ●

AccessModemLAN

ReconfigureCorpFirewall ● ● ●

ReconfGatewayFirewall ●

ConnectToTerminalServices ● ● ●

ConnectToControlSystemServer ● ● ● ● ●

ConnectToVNCInterface ● ● ●

ExploitVulnInTerminalServ ● ● ●

ExploitVulnInControlServ ● ● ● ● ●

ExploitVulnVNCInterface ● ● ●

ExecMalwOnServiceGateway ● ● ●

ExecuteMalwOnStationContr ● ● ● ● ●

ExecuteMalwareOnEmbContr ● ● ●

Expected loss ($) 379 243 57 71 75 94 60 790 1851 279 810

8 Discussion
This paper proposes the use of PRMs to perform security risk

analysis based on architecture models and present a package of

abstract base classes for PRMs with this purpose. This chapter

will discuss the expressiveness of the proposed class-structure

and some practical issues associated with the suggested

approach.

Paper A: A probabilistic relational model for security risk analysis

86

The AbstractPRM-package presented herein prescribes the

classes, attributes, class-references, and attribute dependencies a

ConcretePRM-package should include. Although the

AbstractPRM-package thereby constrains the structure of a

ConcretePRM-package, it does not dictate what level of detail a

ConcretePRM-package should have. A ConcretePRM-package

could include attack steps on abstraction levels such as “Run

code”, “Exploit buffer overflow vulnerability to run code” or

“Exploit VU#238019 to run arbitrary code”. Similarly, a

ConcretePRM-package can specify assets, countermeasures,

threats and threat agents on any level of abstraction. This

flexibility is a result of the possibility to represent uncertain

variable-relationships probabilistically. A more detailed model

would typically enable more informative conditional probability

distributions. Given that the conditional probabilities are

accurate this would make a ConcretePRM-package able to

produce more informative predictions when it is instantiated.

For example, a detailed ConcretePRM-package might be able to

predict the possibility to accomplish with an attack to 96% or 1

% for two architectures. A less detailed ConcretePRM-package

might be able to predict this probability to 70% or 35 %.

Although detailed ConcretePRM-package would allow more

predictive power, more effort is required both when the

ConcretePRM-package is created and when the Concrete PRM-

package is instantiated. Hence, informative predictions must be

balanced against cost of identifying accurate conditional

probabilities for it and the practitioners’ cost when creating

instance models with it. Another trade-off is the utility and

relevance of the PRM’s predictions to practitioners. A PRM that

only covers a limited scope might be able to offer more

informative predictions than one with a wider scope and less

detail. However, a limited scope increases the risk of sub

optimizing the architecture design decisions from an enterprise-

wide perspective.

One feature of the proposed AbstractPRM-package is that it

includes inference of the probability that attacks are attempted.

The threat agent’s decision model is here compactly represented

by a probability distribution which states if the threat will be

attempted given the probability that the attack succeeds and that

Paper A: A probabilistic relational model for security risk analysis

87

it leads to accountability. Properties of threat agents are also

compactly represented in the AbstractPRM. Clearly, the

representation of threat agents’ resources on the scale

High/Medium/Low cannot capture all distinguishing

characteristics of threat agents. This attribute is however, just as

threat agents’ decision model, a research field on its own. This

AbstractPRM-package does not elaborate on these two fields,

but instead provides a clear-cut interface to them.

A software tool [49] has been developed to support the creation

and instantiation of PRMs based on the inference engine SMILE

[53]. Instantiated PRMs can become quite large, but there exist

today methods for solving also very large Bayesian networks

[54]. Future extensions of this tool include support to

automatically instantiate relevant attack steps and threats for a

particular instance model. To be of practical use for decision

makers though, ConcretePRM-packages must be specified. The

dependencies among variables in the security field can be

obtained from sources such domain experts, literature,

experiments, vulnerability statistics, security exercises (e.g. red

team-blue team exercises), or a combination of sources like

these. Models can also be updated as new threats or

countermeasures emerge.

To create a ConcretePRM-package where the qualitative

structure is optimal with regard to security risk prediction and

the conditional probabilities represent an undisputable truth is of

course extremely difficult, if not impossible. If domain experts

judgment has been used to define conditional probabilities its

output will also be of subjective nature. However, to be of

practical use it is sufficient if a ConcretePRM-package captures

the knowledge that is available in the security field and thereby

provides the decision maker with a tool that improves security

risk analysis activities. Also, decision makers are often interested

in how different architectural scenarios are ordered when it

comes to security, for example if the to-be architecture is better

or worse than the as-is architecture. In that case the exact values

of the predictions are not their most important quality, but

rather that scenarios are correctly ordered with respect to their

security risk.

Paper A: A probabilistic relational model for security risk analysis

88

The mere possibility to express and quantify how security

theories relate to different architectures is another feature

offered by the AbstractPRM-package. Security theories from

diverse fields can be expressed in ConcretePRM-packages, and

these theories can be consolidated with each other by integrating

their packages. Furthermore, since PRMs in their pure form are

versatile, ConcretePRM-packages can also be integrated with

PRMs that express theories from other fields. For example

theories on how costs, business value or modifiability relates to

different architectures. This would allow decision makers to

make informed decisions regarding the security risk associated

with different enterprise architectures; while at the same time

take other concerns into consideration.

9 Conclusions
PRMs allow architectural metamodels to be coupled to a

probabilistic inference engine. This makes it possible to specify

how the state of object’s attributes depends on the state of other

attributes in an architectural model. This paper proposes a

package of abstract PRM-classes that specify how probabilistic

models should be coupled to architectural metamodels to enable

security risk analysis.

The versatility provided by the probabilistic side of PRMs makes

it possible to specify security theories on any abstraction level

and to couple these with an architectural metamodel with the

proposed set of abstract classes. Concrete classes can be

developed by creating subclasses to the package of abstract

classes and under a set of constraints associate these with a

probabilistic model. By specializing the abstract classes into

concrete classes an architectural metamodel is defined and

associated with formal machinery for assessing security risk from

its instantiations. The structure inherited from the abstract

classes also ensures that this formal machinery can calculate

security risk from an instance model that only specifies assets

and asset-relationships specified in an architectural model.

Hence, the person instantiating the instance model is not

required to quantify security attributes or provide information on

vulnerabilities for security risk to be assessed.

Paper A: A probabilistic relational model for security risk analysis

89

10 References
[1] J. J. C. H. Ryan, D. J. Ryan, Expected benefits of information

security investments, Computers & Security, 25 (2006) 579-
588.

[2] T. Tsiakis, G. Stephanides, The economic approach of
information security, Computers & Security, 24 (2005) 105-
108.

[3] H. Cavusoglu, B. Mishra, and S. Raghunathan, A model for
evaluating it security investments, Communications of the
ACM, 47 (2004) 87–92.

[4] L. A. Gordon, M. P. Loeb, Managing Cybersecurity
Resources: A Cost-Benefit Analysis, Mcgraw-Hill, New York,
USA, 2006.

[5] W. Ozier, Risk analysis and assessment, in Information
security management handbook, 4th ed, Auerbach, Boca
Raton, USA, 1999, pp. 247–285.

[6] W. Huaqiang, F. Deb, C. Olivia, R. Chris, Cost benefit
analysis for network intrusion detection systems, CSI 28th
annual computer security conference, Washington, DC, 2001.

[7] C. Iheagwara, The effect of intrusion detection management
methods on the return on investment, Computers and
Security, 23(2004) 213–228.

[8] Hogganvik, A Graphical Approach to Security Risk Analysis.
Oslo, Norway, Norway: University of Oslo - Faculty of
Mathematics and Natural Sciences, 2007.

[9] O. Sheyner, Scenario Graphs and Attack Graphs. PhD
Thesis, Carnegie Mellon University, 2004.

[10] N. Friedman, L. Getoor, D. Koller, A. Pfeffer, Learning
probabilistic relational models, in In International Joint
Conferences on Artificial Intelligence, pp. 1300-1309, 1999.

[11] Object Management Group (OMG), Unified Modeling
Language (UML), 2009.

[12] Object Management Group (OMG), OMG Systems
Modeling Language (OMG SysML), 2008.

[13] Object Management Group (OMG), Business Process
Modeling Notation, 2009.

[14] G. Sindre, A. L. Opdahl, Eliciting security requirements with
misuse cases, Requirements Engineering, 10 (2005) 34–44.

[15] J. McDermott and C. Fox, Using abuse case models for
security requirements analysis, in Proceedings of the 15th
annual computer security applications conference, pp. 55,
Phoenix, Arizona, USA, 1999.

[16] J. McDermot, Abuse-case-based assurance arguments, in
Proceedings of the 17th annual computer security
applications conference, pp.0366, New Orleans, Los Angeles,
USA, 2001.

Paper A: A probabilistic relational model for security risk analysis

90

[17] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-
Based Modeling Language for Model-Driven Security, in
«UML» 2002 - The Unified Modeling Language. Springer
Berlin / Heidelberg, 2002.

[18] K. M. Trevisani, R. E. Garcia, SPML: A Visual Approach for
Modeling Firewall Configurations, in Modeling Security
Workshop, Toulouse, France, 2008. Avaliable at:
http://www.comp.lancs.ac.uk/modsec/papers/modsec08_su
bmission_21.pdf

[19] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, A Natural
Extension of Tropos Methodology for Modelling Security, in
Proceedings of the Agent Oriented Methodologies
Workshop, Seattle, USA, 2002.

[20] J. Jürjens, Secure Systems Development with UML. Berlin
Heidelberg: Springer-Verlag, 2005.

[21] ISO/IEC JTC1/SC27, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and
general model, CCMB 2006-09-01, 2006.

[22] Insight Consulting, The Logic behind CRAMM’sAssessment
of Measures of Risk and Determination of Appropriate
Countermeasures, 2005.

[23] B. Karabacak, I. Sogukpinar, ISRAM: information security
risk analysis method, Computers & Security, 24 (2005), 147-
159.

[24] C. J. Alberts, A. J. Dorofee, OCTAVE Criteria Version 2.0,
CMU/SEI-2001-TR-016. ESC-TR-2001-016, 2001.

[25] M. Howard, D. C. LeBlanc, Writing Secure Code, Microsoft
Press, Redmond, WA, USA, 2002.

[26] S. E. Schechter, Computer Security Strength & Risk: A
Quantitative Approach, PhD Thesis, Harvard University,
Boston, USA, 2004.

[27] B. Schneier., Attack trees: Modeling security threats, Dr.
Dobb's Journal , December, 1999.

[28] S. Jha, O. Sheyner, J. Wing, Two formal analyses of attack
graphs, in Proceedings of the 15th Computer Security
Foundation Workshop, pp. 49-63, 2002.

[29] P. Pamula, P. Ammann, A.Jajodia, V. Swarup, A weakest-
adversary security metric for network configuration security
analysis, in Conference on Computer and Communications
Security, Proceedings of the 2nd ACM workshop on Quality
of protection, pp. 31 - 38 ,2006.

[30] P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based
network vulnerability analysis, in Proceedings of 9th ACM
Conference on Computer and Communications Security, pp.
217 - 224, 2002.

[31] S. Jajodia, S. Noel, B. O’Berry, Topological analysis of
network attack vulnerability, in Managing Cyber Threats:
Issues, Approaches and Challanges, chapter 5. Kluwer

Paper A: A probabilistic relational model for security risk analysis

91

Academic Publisher, V. Kumar, J. Srivastava, and A.
Lazarevic, Eds. Springer US, 2003, pp. 247-266.

[32] T. Tidwel, R. Larson, K. Fitch, J. Hale, Modeling Internet
attacks, in IEEE Workshop on Information Assurance and
Security, pp 54-59, West Point, NY, USA, 2001.

[33] C. Phillips, L. P. Swiler, A graph-based system for network-
vulnerability analysis, in Proceedings of the 1998 workshop
on New security paradigms, pp. 17-79, 1998.

[34] X. Ou, W. F. Boyer, M. A. McQueen., A Scalable Approach
to Attack Graph Generation, in Proceedings of the 13th
ACM Conference on Computer and Communications
Security, pp. 336-345, 2006.

[35] Y. Liu, M. Hong, Network vulnerability assessment using
Bayesian networks, in proceedings of SPIE, , pp. 61-
71Orlando, Florida, USA, 2005.

[36] W. J. Caelli, D. Longley, A. B. Tickle, A methodology for
describing information and physical security architectures, in
Proceedings of the IFIP TC11, Eigth International
Conference on Information Security, vol. A-15, pp. 277–296,
Singapore, 1992.

[37] Anderson, D. Longley, L. F. Kwok, Security modelling for
organisations, in Proceedings of the 2nd ACM Conference on
Computer and communications security, pp. 241-250, Fairfax,
Virginia, United States, 1994.

[38] S. Bistarelli, F. Fioravanti., P. Peretti., Defense trees for
economic evaluation of security investments, in in
proceedings of The International Conference on Availability,
Reliability and Security, pp. 416-423, Vienna, Austria, 2006.

[39] S. Bistarelli, M. Dall’Aglio, P. Peretti, Strategic games on
defense trees, in Formal Aspects in Security and Trust.
Springer Berlin / Heidelberg, 2007, pp. 1-15.

[40] S. Bistarelli, F. Fioravanti, P. Peretti, Using CP-nets as a
Guide for Countermeasure Selection, in Proceedings of the
ACM symposium on Applied computing, pp. 300 – 304,
Seoul, Korea, 2007.

[41] O. Sheyner, J. Wing, Tools for Generating and Analyzing
Attack Graphs, in Formal Methods for Components and
Objects. Springer Berlin / Heidelberg, 2004, pp. 344-371.

[42] L. P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-
attack graph generation tool, DARPA Information
Survivability Conference & Exposition II, 2001. DISCEX '01.
Proceedings , vol.2, pp.307-321, 2001.

[43] R. W. Ritchey, P. Ammann, Using model checking to analyze
network vulnerabilities, in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 156–165, 2001.

[44] T. Sommestad, M. Ekstedt, P. Johnson, Cyber Security Risks
Assessment with Bayesian Defense Graphs and Architectural
Models, in 42nd Hawaii International Conference on System
Sciences, pp. 1-10, Hawaii, 2009.

Paper A: A probabilistic relational model for security risk analysis

92

[45] F. V. Jensen, An Introduction to Bayesian Networks, New
York: Springer-Verlag, 1996.

[46] W. H. Hsu, R. Joehanes, Relational Decision Networks, in
Working Notes of the ICML-2004 Workshop on Statistical
Relational Learning and Connections to Other Fields, pp. 61-
67, Banff, Canada, 2004.

[47] R. Shachter, Evaluating influence diagrams, Operations
Research, 34 (1986) 871-882.

[48] W. Schwartau, Time-based security explained: Provable
security models and formulas for the practitioner and vendor,
Computers & Security, 17 (1998), 693-714.

[49] M. Ekstedt, U. Franke, P. Johnson, R. Lagerström, T.
Sommestad, J. Ullberg, M. Buschle, A Tool for Enterprise
Architecture Analysis of Maintainability. In Proceedings of
the 2009 European Conference on Software Maintenance and
Reengineering, 327-328,Washington, DC, USA, 2009,

[50] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone,
Modeling security requirements through ownership,
permission and delegation, in 13th IEEE International
Conference on Requirements Engineering, 167- 176, Paris,
France, 2005.

[51] J. Jürjens, P. Shabalin, Automated Verification of UMLsec
Models for Security Requirements, 2004 - The Unified
Modelling Language, pp. 365-379, Springer
Berlin/Heidelberg, 2004.

[52] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J.
Mylopoulos, Tropos: An Agent-Oriented Software
Development, Autonomous Agents and Multi-Agent Systems
, 8(2004), 203-236

[53] SMILE. Decision System Laboratory, University of
Pittsburgh, http://genie.sis.pitt.edu/

[54] C.Yuan M.J Druzdzel. Mathematical and Computer
Modelling, 43(2006), 1189-1207.

Paper B: Effort estimates for vulnerability discovery projects

93

Paper B:

Effort estimates for

vulnerability discovery

projects
Teodor Sommestad, Hannes Holm and Mathias Ekstedt

Abstract

Security vulnerabilities continue to be an issue in the software

field and new severe vulnerabilities are discovered in software

products each month. This paper analyzes estimates from

domain experts on the amount of effort required for a

penetration tester to find a zero-day vulnerability in a software

product. Estimates are developed using Cooke's classical method

for 16 types of vulnerability discovery projects – each

corresponding to a configuration of four security measures. The

estimates indicate that, regardless of project type, two weeks of

testing are enough to discover a software vulnerability of high

severity with fifty percent chance. In some project types an

eight-to-five-week is enough to find a zero-day vulnerability with

95 percent probability. While all studied measures increase the

effort required for the penetration tester none of them have a

striking impact on the effort required to find a vulnerability.

Paper B: Effort estimates for vulnerability discovery projects

94

1 Introduction
A substantial share of the security problems encountered in

enterprises today arises because software products have security

vulnerabilities. New vulnerabilities are discovered on a

continuous basis. During 2010 alone, a total of 2096 new

software vulnerabilities of high severity were publicly announced

[1]. Many factors influence the number of vulnerabilities that are

found in a software product. The effort invested into searching

for vulnerabilities in a software product is one important variable

[2], [3]. Another important variable is the difficulty associated

with finding vulnerabilities in the software product, i.e. how

much effort that is required to find a vulnerability in it.

Secure software development practice (see [4] for an overview)

suggests a wide range of measures to increase the security of a

software product’s source code and thus increase the effort

required to find a vulnerability, e.g. testing during the

development phase. A natural question to ask is how much

effort that is required to find a vulnerability in a software

product given that different security enhancing measures have

been used. Unfortunately, there are no studies available which

answer this question, or even provide rough estimates of it.

Ideally, this would be tested in experiments or derived from

representative archival data on projects that attempted to

discover vulnerabilities. However, constructing experiments of

this kind are associated with substantial cost, and reliable archival

data on efforts made not available to the community [5].

Expert judgment is often used when quantitative data is difficult

to obtain from experiments or studies of archival data. This

paper presents expert estimates on vulnerability discovery effort

that are constructed using Cooke’s classical method. This

method assigns weights to experts based on how correct and

certain they are on a set of questions related to the issue

investigated, and for which the true answer is known at the time

of analysis. It has been used to assess uncertain quantities in a

wide range of domains and in general outperforms other

methods that synthesize or aggregate domain experts’ judgment

[6].

Paper B: Effort estimates for vulnerability discovery projects

95

The effort estimates presented in this paper quantify the effort

associated with finding a zero-day vulnerability in a software

product. That is, finding a vulnerability in deployed software

product which is not already publicly announced or patched [7].

The experts in this study are researchers in the software

vulnerability field. They used their domain knowledge to assess

the work effort it takes for a professional penetration tester

taking on 16 hypothetical vulnerability discovery projects, all

with the goal to find a zero-day vulnerability of high severity.

The resulting estimates show the probability that a vulnerability

is found as a function of the work days spent on the project.

The paper is structured as follows. Section 2 presents the

variables used in the effort estimation model. In section 3

Cooke’s classical method is explained. Section 4 presents the

method and section 5 presents the results. In section 6 these

results are discussed and in section 7 conclusions are drawn.

2 Model and assumptions
This paper estimates the effort that is required to discover a

zero-day vulnerability in a software product given that different

security measures are used. Both the software security field and

effort estimation field are well explored. However, no previous

work has been found on the work-effort required to find zero-

day vulnerabilities. This section presents the variables assessed in

this study and the assumptions it is based upon.

2.1 Variables impacting discovery

effort

A countless number of variables can be assumed to influence the

effort required to find vulnerabilities in it. Technical measures,

process measures and organizational measures are all of

relevance [4].

Naturally, the scope of this research does not include all

variables that could have an impact on the effort required to find

a zero-day vulnerability. To identify a manageable set of variables

to include a panel consisting of three security experts were

Paper B: Effort estimates for vulnerability discovery projects

96

consulted. All experts in this panel had practical experience of

penetration testing and worked with security testing on a regular

basis. They prioritized a list of candidate variables drawn from

literature such as [4], [8–11]. They were also given the option to

suggest variables not included in the list presented to them.

Table 1 shows the variables that came out of this process and are

included in this study. All these variables were expected to have

an impact on the effort required to find a new vulnerability in a

software product.

Table 1. Variables studied.

Variable Description

Scrutinized The targeted software has been scrutinized before.
SourceCode The professional penetration tester has access to the

source code.
SafeLanguage The software is written in a safe language (e.g. C#,

Java) or a safe dialect (e.g. Cyclone).
CodeAnalyzers The software has been analyzed by static code

analyzers and improved based on the result.

All variables described in Table 1 have support in literature.

Software which has been scrutinized and tested in practice will be

more difficult to find vulnerabilities in. This type of effect is

often assumed in software reliability models [5] and data on

vulnerabilities found in software products imply that a saturation

level for vulnerabilities discovered in a product is reached after a

certain time on the market [12]. Access to the source code, i.e. the

uncompiled code, is also considered a relevant factor [13].

Access to the uncompiled source code will enable white box

testing and is likely to decrease the effort required to find a

vulnerability. If the programming language used to create the

software product is a safe language [14] many potential

programming flaws leading to vulnerabilities can be avoided.

Finally, the use of code analyzers is often a recommended practice

in software development to identify vulnerabilities in the code

[15–17] .

2.2 Assumptions

A number of assumptions are used for the effort estimates

produced in this study and are kept constant in this study. First,

Paper B: Effort estimates for vulnerability discovery projects

97

the competence of the actual performer of the vulnerability

discovery project can be expected to have a substantial impact

on the effort required [5]. To eliminate variations caused by this

variable it is assumed that the person who carries out the

vulnerability discovery project is a professional penetration

tester. Secondly, it would be extremely difficult to find

vulnerabilities in a product which is completely inaccessible to

the person carrying out the project. Therefore, it is assumed that

the person searching for vulnerabilities has access to the

compiled code (the binary) even if the source code (SourceCode) is

unavailable to him/her. Third, a work day was set to eight hours

of work. This was specified to avoid confusion about what

quantity that should be estimated (calendar, budget or effort)

[18]. Fourth, the vulnerability that should be discovered needs to

qualify as a high severity-vulnerability according to the Common

Vulnerability Scoring System [19]. Since such vulnerabilities are

more severe than other vulnerabilities it is more interesting to

obtain knowledge about them. The final assumption used, and

presented to those who estimated effort, was that all unspecified

variables (e.g. the size of the source code) assume the state they

typically have in an enterprise environment. Thus, any

uncertainty remaining after the variables and assumptions are

specified should be accounted for in the estimates. That is,

variation between software not covered by the assumptions or

variables will introduce uncertainty and variation to the effort

required. The respondents were asked to consider this

uncertainty onto the estimates the made.

3 Synthesizing expert

judgments
There is much research on how to combine, or synthesize, the

judgment of multiple experts to increase the calibration of the

estimate used. Research has shown that a group of individuals

assess an uncertain quantity better than the average expert, but

the best individuals in the group are often better calibrated than

the group as a whole [20]. The combination scheme used in this

research is the classical model of Cooke [21]. Experience shows

Paper B: Effort estimates for vulnerability discovery projects

98

that Cooke’s classical method outperforms both the best expert

and the “equal weight” combination of estimates. In an

evaluation involving 45 studies it performs significantly better

than both in 27 studies and performs equally as well as the best

expert in 15 of them [6].

In Cooke’s classical method calibration and information scores are

calculated for the experts based on their answers on a set of seed

questions, i.e. questions for which the true answer is known at

the time of analysis. The calibration score shows how well the

respondent’s answers represent the true value; the information

score show how precise the respondent’s answers are. These two

scores are used to define a decision maker which assigns weights to

the experts based on their performance. The weights defined by

this decision maker are used to weight the respondents answer’s

to the questions of interest – in this case the effort estimates for

vulnerability discovery projects. In sections 3.1, 3.2 and in 3.3

Cooke’s classical method is explained. For a more detailed

explanation the reader is referred to [21].

3.1 Calibration score

In the elicitation phase the experts provide individual answers to

the seed questions. The seed questions request the respondents

to specify a probability distribution for an uncertain continuous

variable. This distribution is typically specified by stating its 5th,

50th, and 95th percentile values. These percentiles yield four

intervals over the percentiles [0-5, 5-50, 50-95, 95-100] with

probabilities of p= [0.05, 0.45, 0.45, 0.05]. As the seeds are

realizations of these uncertain variables the well calibrated expert

will have approximately 5% of the realizations in the first

interval, 45 % of the realizations in the second interval, 45 % of

the realizations in the third interval and 5% of the realizations in

the fourth interval. If s is the distribution of the seeds over the

intervals the relative information of s with respect to p is:

 () ∑ ()

 .

This value indicates how surprised someone would be if one

believed that the distribution was p and then learnt that it was s.

Paper B: Effort estimates for vulnerability discovery projects

99

If N is the number of samples (seeds) the statistic of 2NI(s, p) is

asymptotically Chi-square distribution with three degrees of

freedom. This is asymptotic behavior is used to calculate the

calibration Cal of expert e as: ()
 (()).

Calibration measures the statistical likelihood of a hypothesis.

The hypothesis tested is that realizations of the seeds (s) are

sampled independently from a distribution agreeing with the

expert's assessments (p).

3.2 Information score

The second score used to weight experts is the information

score, i.e. how informative the expert’s distributions are. This

score is calculated as the deviation of the expert's distribution to

some meaningful background measure. In this study the

background measure is a uniform distribution over [0,1].

If bi is the background density for seed i∈{1,…,N} and de,i is the

density of expert e on seed i the information score for expert e is

calculated as: ()

∑ ()

 , i.e. as the relative

information of the experts distribution with respect to the

background measure. It should be noted that the information

score does not reflect calibration and does not depend on the

realization of the seed questions. So, regardless of what the

correct answer is to a seed question a respondent will receive a

low information score for an answer which is similar to the

background measure, i.e. the answer is distributed evenly over

the variable’s range. Conversely, an answer which is more certain

and has focused the probability density over few possible

outcomes will yield high information scores.

3.3 Constructing a decision maker

The classical method rewards experts who produce answers with

high calibration (high statistical likelihood) and high information

value (low entropy). A strictly proper scoring rule is used to

calculate the weights the decision maker should use. If the

calibration score of the expert e is equal or greater than a

threshold value the expert’s weight is obtained as

w(e)=Cal(e)*Inf(e). If the expert’s calibration is less than α the

Paper B: Effort estimates for vulnerability discovery projects

100

expert’s weight is set to zero, a situation which is common to

happen a substantial number of experts in practical applications.

The threshold value α corresponds to the significance level for

rejection of the hypothesis that the expert is well calibrated. The

value of α is identified by resolving the value that would

optimize a virtual decision maker. This virtual decision maker

combines the experts’ answers (probability distributions) based

on the weights they obtain at the chosen threshold value (α). The

optimal level for α is where this virtual expert would receive the

highest possible weight if it was added to the expert pool and

had its calibration and information scored as the actual experts.

When α has been resolved the normalized value of the experts

weights w(e) are used to combine their estimates of the uncertain

quantities of interest.

4 Data collection method
This section presents how the data was collected in terms of:

how seed questions for Cooke’s classical method were

constructed, the population and sample of experts that was

chosen and how the elicitation instrument was developed and

tested.

4.1 Seed questions

As the experts performance on answering the seed questions are

used to weight them, it is critical that the seeds are well validated

and also that they lie in the same domain as the studied variables.

They need to be drawn from the respondents’ domain of

expertise, but need not necessarily be directly related to

questions of the study [21].

Naturally, the robustness of the weights attributed to individual

experts depends on the number of seeds used. This study used

11 seed questions. Experience shows this is more than enough to

see substantial difference in calibration [21] between experts.

For this study two types of seed questions were used (cf. Table

2). All of these were constructed using information from the

Paper B: Effort estimates for vulnerability discovery projects

101

national vulnerability database and concerned characteristics of

existing vulnerabilities in software products. Questions 1-5

concerned different types of vulnerabilities and under what

conditions they could be exploited; questions 6-11 concerned

how often publicly known vulnerabilities in different products

was due to input validation or buffer errors and to authentication

or authorization errors (cf. Table 3). Both these two types of

questions are related to the topic as they gauge how well the

expert can assess properties related to vulnerabilities that can be

expected to be found.

Table 2. Seed questions used in abbreviated format and
their realized value.

Question Real

1 What portion of vulnerabilities published during 2010 of high

severity has a complete impact on CIA

57 %

2 What portion of vulnerabilities published during 2010 of

medium severity has a complete impact on CIA.

6 %

3 What portion of vulnerabilities published during 2010 that are

remotely exploitable (does not require LAN access) will require

that the attacker can authenticate itself before succeeding with

an exploit?

9 %

4 What portion of vulnerabilities published in 2010 that are

remotely exploitable (does not require LAN access) and

requires that the attacker can authenticate itself before the

exploit is of high severity?

15 %

5 What portion of vulnerabilities published in 2010 that are

remotely exploitable (does not require LAN access) is of high

severity?

52 %

6 What portion of vulnerabilities publicly announced in 2010

with high severity is due to input validation or buffer errors?

53 %

7 What portion of vulnerabilities publicly announced with high

severity for Windows 7 is due to input validation or buffer

errors?

36 %

8 What portion of vulnerabilities publicly announced with high

severity for Apple’s products is due to input validation or

buffer errors?

31 %

9 What portion of vulnerabilities publicly announced with high

severity for the .NET framework is due to authentication or

authorization errors?

10 %

10 What portion of vulnerabilities publicly announced with high

severity for the Microsoft’s Internet Information Services is

due to authentication or authorization errors?

13 %

11 What portion of vulnerabilities publicly announced with high

severity for Cisco’s products is due to authentication or

authorization errors?

11 %

Paper B: Effort estimates for vulnerability discovery projects

102

Table 3. Error types from NVD used.

Input validation/buffer errors Authentication or
authorization errors

CWE 20: Improper Input

Validation

CWE 255: Credentials

Management

CWE 89: SQL Injection

CWE 264: Permissions,

Privileges, and Access

Controls

CWE 119: Failure to

Constrain Operations within

the Bounds of a Memory

Buffer

CWE 287: Improper

Authentication

CWE 134: Uncontrolled

Format String

CWE 310: Cryptographic

Issues

CWE 189: Numeric Errors

4.2 The domain experts

As this research aims to identify quantities related to discovery

effort the respondents needed both the ability to evaluate aspects

in the domain and the ability to reason in terms of probabilities.

In terms of the expert categories described in [22] individuals

that are expert judges are desirable.

Good candidates for this are researchers in the software security

field. These can be expected to both understand how to reason

with probabilities and to possess the required skills to evaluate

the effectiveness difficulty of finding vulnerabilities in software.

Software security researchers were therefore chosen as the

population to survey. To identify suitable respondents, articles

published in the SCOPUS database [23], INSPEC or

Compendex [24] between January 2005 and September 2010

were reviewed. Authors was considered if they had written

articles in the information technology field with any of the

following phrases in the title, abstract or keywords: “software

vulnerability”, “software vulnerabilities”, “software exploit”,

”software exploits”, “exploit development”, “develop exploits”,,

“develop an exploit” ,”exploit writing”, “writing exploits”,

Paper B: Effort estimates for vulnerability discovery projects

103

“vulnerability research”, or “exploit code”. If their contact

information could be found they were added to the sample of

respondents. After reviewing and screening respondents and

their contact information a sample of 384 individuals was

assessed. The contact information for approximately 80 turned

out to be incorrect or outdated.

As recommended by [25] , motivators were presented to the

respondents invited to the survey: i) helping the research

community as whole, ii) the possibility to win a gift certificate on

literature, and iii) being able to compare their answers to other

experts after the survey was completed. Out of approximately

300 researchers invited to the survey 92 opened the survey and

17 submitted answers to the survey’s questions. A response rate

of this magnitude is logically to be expected of a more advanced

survey of this type.

4.3 Elicitation instrument

A web survey was used to collect the probability distributions

from the invited respondents. The survey was structured into

four parts, each beginning with a short introduction to the

section. First, the respondents were given an introduction to the

survey as such that explained the purpose of the survey and its

outline. In this introduction they also confirmed that they were

the person who had been invited and provided information

about themselves, e.g. years of experience in the field of

research. Second, the respondents received training regarding the

answering format used in the survey. After confirming that this

format was understood the respondents proceeded to its third

part. In the third part both the seed questions and the questions

of the study were presented to the respondents. Finally, the

respondents were asked to provide qualitative feedback on the

survey and the variables covered by it.

Questions in section 3 were each described through a scenario

entailing a number of conditions. Scenarios and conditions for the

seed questions can be found in Table 2; project types and

conditions for the questions of interest in this study is described

in section 2.1.

Paper B: Effort estimates for vulnerability discovery projects

104

In the seed questions the respondent was asked to provide a

probability distribution that expressed the respondent’s belief.

As is custom in applications of Cooke’s classical method this

probability distribution was specified by setting the 5th percentile,

the 50th percentile (the median), and the 95th percentile for the

probability distribution. In the survey the respondents specified

their distribution by adjusting sliders or entering values to draw a

dynamically updated graph over their probability distribution.

The three points specified by the respondents defines four

intervals over the range [0, 100]. The graphs displayed the

probability density as a histogram, instantly updated upon

change of the input values.

In the question of interest, the respondent specified probability

distributions for work days required to find a zero-day

vulnerability. The respondents were asked to specify the number

of work days that would be needed to find a zero-day

vulnerability with a probability of 5 percent, 50 percent and 95

percent. This is a common format to use for effort estimates

[26] and in prediction in general [27]. As before the estimates

dynamically updated a graph representing the answer. However,

for these questions this graph showed the cumulative probability

of finding a zero-day vulnerability as a function of work days

spent. This graph was plotted using linear interpolation between

the three values specified by the respondent.

Use of graphical formats is known to improve the accuracy of

elicitation [28]. Figures and colors were also used to complement

the textual formulations and make the content easier to

understand. In Figure 7 the format presented to respondents is

exemplified.

Elicitation of probability distributions is associated with a

number of issues [28]. Effort was therefore spent on ensuring

that the measurement instrument held sufficient quality. After

careful construction the survey was qualitatively reviewed during

personal sessions with an external respondent representative of

the population. This session contained two parts. First the

respondent was given the task to fill in the survey, given the

same amount of information as someone doing it remotely.

Paper B: Effort estimates for vulnerability discovery projects

105

After this discussions followed regarding the instrument quality.

These sessions resulted in several improvements.

Before this qualitative review the question format as such had

been tested in a pilot study on other security parameters. In that

pilot study a randomized sample of 500 respondents was invited;

34 of these completed the pilot during the week it was open. The

questions in this pilot survey were presented in the same way as

in the present survey. A reliability test using Cronbach’s alpha

[29], [30] was carried out using four different ways to phrase

questions for one variable. Results from this test showed

α=0.817, which indicates good internal consistency of the

instrument.

Figure 7. Examples of question and answering format in
the survey (seed 4 and project type 2).

5 Results
This section presents the result of the analysis performed on the

judgment of the 17 researchers. In section 5.1 the overall

performance of the respondents on the seed questions is

presented. In section 5.2 the synthesized estimates of those

Paper B: Effort estimates for vulnerability discovery projects

106

respondents who were assigned weight are presented. In section

5.3 the influence that each of the four individual variable have

on the effectiveness is described.

5.1 Respondents’ performance

As in many other studies involving expert judgment some of the

respondents were poorly calibrated. Their calibration score

varied between 0.540×10-3 and 0.615 with a mean of 0.305. The

respondents’ information score varied between 0.0770 and 1.009

with a mean of 0.324. Figure 8 shows the information score and

calibration score of the 17 respondents.

Figure 8. Information and calibration scores of the
respondents.

Cooke’s classical method aims is to identify those respondents

whose judgment is well calibrated and informative. The virtual

decision maker was optimized at a significance level (α) of 0.615.

Consequently, the three rightmost respondents in Figure 8

received a weight higher than zero and the other 14 respondents

received a weight of zero. As noted in section 3.3 above it is not

uncommon that a substantial number of respondents receive the

weight zero with this method.

The twelve respondents who received a positive weight all had

the same calibration score (0.615). Their weights are therefore

directly proportional with their information score (cf. section

Paper B: Effort estimates for vulnerability discovery projects

107

3.2). They received weights 0.1086, 0.3711 and 0.5203 after

normalization.

5.2 Work effort in the project types

To identify the probability distribution which the virtual decision

maker assigns to the 16 types of vulnerability discovery projects

examined the respondents’ individual estimates were combined

based on the respondent’s weights. The estimated distributions

were assumed to be distributed in the same way as they were

presented to the respondents (c.f. section 4.3), i.e. as depicted in

the linearly interpolated cumulative probability distributions for

the finding of a zero-day vulnerability when work effort is

increased.

The respondents specified the cumulative probability

distribution through its 5th, 50th and 95th percentile. As depicted

in Table 4 and the synthesized estimates show clear differences

among the project types. The median for the projects varies

between 1 and 14 work days; the value at the 5th percentile varies

between 0 and 3 work days; the value at the 95th percentile varies

between 7 and 855 work days. As could be expected is project

type 5 the one with highest expected effort, closely followed by

project type 7. For these two project types a time budget of

more than 2 years and 4 months is needed to find a vulnerability

with 95 percent certainty. In other project types this certainty

can be obtained with a time-budget of just a week or a month.

Project type 4, 10, 12 and 16 are associated with lowest work

effort.

Paper B: Effort estimates for vulnerability discovery projects

108

Table 1. Different types of vulnerability discovery projects
and the estimated effort to find a vulnerability with a
certain degree of certainty. Values have been rounded off to
closest number of full days.

P
ro

je
c
t

S
c
ru

ti
n

iz
e
d

S
o

u
rc

e
C

o
d

e

S
a
fe

L
a
n

g
u

a
g

e

C
o

d
e
A

n
a
ly

z
e
rs

L
o

w
 (

5
%

)

M
e
d

ia
n

(5
0
%

)

H
ig

h
9
5
%

)

1 Yes Yes Yes Yes 3 13 74
2 Yes Yes Yes No 1 3 26
3 Yes Yes No Yes 0 13 26
4 Yes Yes No No 0 1 7
5 Yes No Yes Yes 1 12 855
6 Yes No Yes No 0 10 27
7 Yes No No Yes 2 9 855
8 Yes No No No 1 4 257
9 No Yes Yes Yes 1 6 27
10 No Yes Yes No 0 4 9
11 No Yes No Yes 0 3 17
12 No Yes No No 1 3 8
13 No No Yes Yes 1 14 344
14 No No Yes No 1 7 27
15 No No No Yes 1 6 18
16 No No No No 0 3 9

5.3 Variables influence on the

effectiveness

Four variables are varied to specify the 16 project types. The

variation over scenarios supports this hypothesis that they

influence effort. A relevant question is then how important these

variables are for the effort required by the attacker. Table 5

shows the mean influence that the four variables have on the

probability distribution. These values are the mean difference

obtained when comparing scenarios where the variable is in the

state true with those scenarios where the variable is in the state

false, and all other variables remain in the same state. For

instance, the values for Scrutinized are obtained as the mean value

of the difference between scenarios 1 and 9, 2 and 10, 3 and 11

and so on.

Paper B: Effort estimates for vulnerability discovery projects

109

All variables have a positive impact on the effort required to find

a zero day vulnerability given a number of work days. As can be

seen from Table 5 the most influential variables on the 95th

percentile are Scrutinized (if the software has been searched for

vulnerabilities before), SourceCode (if the attacker can get access to

the source code) and CodeAnalyzers (if the software product has

been improved with static code analyzers). The impact of these

variables on the high extreme value, where a zero-day

vulnerability is found with 95 percent probability, is substantial.

Such sizeable difference cannot be found for the variable

SafeLanguage. As a consequence this variable has a meager

influence on the expected work effort in comparison to the

other variables.

Table 5. Mean influence in work days of the variables under
the assumptions used in the study.

Variable

Low

(5%)

Median

(50%)

High

(95%)

Scrutinized +0.4 +1.1 +208.5

SourceCode +0.1 +3.6 +274.8

SafeLanguage +0.4 +4.6 +24.0

CodeAnalyzers +0.6 +3.9 +230.8

6 Discussion
Software insecurity is a serious problem in today’s society.

Decision makers can certainly make use of data on the

effectiveness of measures that make vulnerability discovery

projects more cumbersome. Most decision makers probably

would prefer reliable empirical data to base their decisions on.

However, such data is not available today. It is difficult to obtain

such data from archival studies as no such archives are available

and as indicated from the result of this study it would also be

costly to collect this data from repeated experiments.

The use of expert judgment can be motivated in absence of

reliable data. This study extracts and synthesizes data from

domain experts. The method used to analyze the experts’

judgments and combine these is described in section 6.1 below.

Paper B: Effort estimates for vulnerability discovery projects

110

The elicitation instrument used is discussed in section 6.2. The

result as such and the importance variables included in the study

are discussed in section 6.3.

6.1 Expert judgment analysis

In this study Cooke’s classical method [21] was used to

synthesize expert judgments. This performance based method

aims to select the experts that are well calibrated and combine

their judgments in an optimal way. The track record of this

method [6] positions it as the best-practice when it comes to

combining experts’ judgment of uncertain quantities.

Eleven seed questions were used to evaluate calibration and

information scores. These seed questions are drawn from a

vulnerability database. A concern to the validity is that this

source also is available to the respondents who could have used

them to identify the answers to the seed questions. If they would

do so these seeds would not work well as a gauge for how well

calibrated and informative the expert’s own judgment is.

However, it appears unlikely that anyone did so. None of the

respondents answering the survey has given comments that

indicate that they have realized that the correct answer can be

found in online databases. Neither did the qualitative reviewer

realize this during the qualitative reviews. Furthermore,

inspections of the answers received do not indicate any answers

were based on these sources.

The use of these seed questions shows that calibration varies

among experts. This can be seen through the calibration scores

to the seed questions used in this study (c.f. Figure 8). The three

best calibrated experts were assigned weight when the virtual

decision maker was optimized. The synthesized probability

distributions created based on their judgment involve a great deal

of uncertainty. In some cases the 95 percent confidence interval

spans over 886 work days. As can be seen from Figure 8 , the

estimates provided by the three respondents who obtained

weight are not the most informative ones. This should not be

seen as surprising. Overconfidence is a well-known cause for

poor calibration in expert judgments [31]. Cooke’s methods only

assign weights to experts with a calibration score that exceeds a

Paper B: Effort estimates for vulnerability discovery projects

111

threshold value. However, these experts’ weight is calculated

with the information score as one of two factors. This avoids

domination of uninformative experts in the synthesis of

judgments.

When using this method it is appropriate to perform robustness

test with respect to the seed variables and the experts by

removing one expert and investigating the impact of this

removal [21]. Such tests were performed and indicate that the

solution is robust to changes in both seed questions and experts.

6.2 Validity and reliability of the

elicitation instrument

Cooke [21] suggests that seven guidelines should be followed

when data is elicited from experts. How these have been

addressed in the present study is described below.

Cooke states that questions must be clear and unambiguous and

that a dry run should be carried out before the actual study. In

this study the clarity of questions were tested in qualitative

reviews with a strategically selected respondent representative of

the population. The comments received from this person helped

improve the understandability of the instrument and remove

ambiguity. Also, a quantitative test was performed on a survey

with a similar structure and a similar way of phrasing questions.

This quantitative test was made through a pilot survey answered

by 34 respondents. It indicated good reliability of the survey

instrument.

It is also suggested that an attractive graphical format and a brief

explanation of the elicitation format should be prepared [21].

The answering format used in this study was supported by

graphical illustrations – the answers were entered by entering a

probability function on the screen. This format was also carefully

explained in an introductory training section in the survey. Also,

background information introduced each new section.

Cooke further recommends that the elicitation should not

exceed one hour and that coaching should be avoided. None of

the respondents who completed the survey spent more than one

Paper B: Effort estimates for vulnerability discovery projects

112

hour to do so and efforts were made to ensure that the questions

were formulated in a neutral way.

The last recommendation given in [21] is that an analyst should

be present when respondents answer the questions. The

respondents were given contact information to the research

group when invited to the survey and they were encouraged to

use these any if questions arose. It is possible that analysts’

physical absence from the elicitation suppressed some potential

questions from being asked. In the survey the respondents were

asked to comment the clarity of the questions and the question

format used. Based on the comment received it appears as if the

questions and the assumptions were understandable. Two

respondents did however comment that the questions perhaps

should be directed towards practitioners (“hackers”) rather than

researchers. While practitioners probably need more guidance in

specifying answers through probability distributions this

recommendation gives input to future research efforts in this

track

6.3 Variables importance to zero-

day discovery projects

Two weeks of work is enough to have a fifty-fifty chance of

finding a zero-day vulnerability in all projects types assessed. In

some cases two weeks of work is enough to give more than 95

percent chance of discovering a zero-day vulnerability and the

fifty percent chance is reached after just a couple of days. While

these estimates give dismaying results they are not in conflict

with already known data. The rate with which vulnerabilities are

publically announced hints that effort required to find them is

modest. We also tested this prediction model using the PERT

formula [32] on a number of software products which have been

scrutinized. The estimates appear reasonable when compared to

the publicly disclosed vulnerabilities in SecurityFocus [33] during

2010. For example, the estimates says that during all days of

2010 there would be the equivalent of approximately 7

professional 8 hour work-day on finding and disclosing

vulnerabilities in Firefox, and that 17 professional penetration

testers working each work-day on Internet Explorer 8.

Paper B: Effort estimates for vulnerability discovery projects

113

No radical impact can be made using the measures included in

this study, but they all help to increase the security of software

products. Their impact on the median value is similar for all

measures except making sure that products have been

scrutinized (this has less impact on the median). The use of safe

languages does not impact the extreme value (95th percentile) as

much as the other ones. As a consequence, it does not influence

the expected effort as much as the other three countermeasures

do, and could be seen as less effective.

In the survey the respondents were asked to indicate if there

were important variables missing. Only three out of 17

respondents suggested other priorities than used in the survey.

All three suggested different things: fuzzers combined with static

code analysis as one variable, if static code analysis was

performed on a regular basis (not just performed), and variables

indicating the security expertise of the developer and or

development process (not specified which). All these suggestion

were considered in the discussion with the panel of experts who

prioritized variables to include in the survey, but were

intentionally excluded from the survey. This, together with the

survey-respondents’ opinions indicates that the most important

variables for estimating vulnerability discovery are included in

this study.

While the most important variables seems to be included in our

model the estimates indicate that the effort required to discover

a new vulnerability can be as high as man-years even if the

compiled code is available to the attacker. This study does not

reveal which these conditions are, i.e. when the penetration

tester will have to spend years searching for a vulnerability. The

expert panel and the respondents of the survey indicated that the

most important variables are included in the model used here. It

is therefore likely that a number of favorable conditions must

apply in these cases. In order to obtain better and more detailed

knowledge in this area further work could explore what set of

measures that causes this effect and how to achieve such secure

software products.

Paper B: Effort estimates for vulnerability discovery projects

114

7 Conclusion
It appears difficult to achieve a high level of security assurance in

today’s software intensive environment. The probability that a

professional penetration tester will find a previously unknown

vulnerability in software product used today is disturbingly high.

Under most conditions a few days appears enough to find a

zero-day vulnerability with a fifty percent chance.

Countermeasures do increase work effort required, but none of

them seem to have a striking impact on the effort required to

find a vulnerability, at least not in the general case. The estimates

made by experts included in this study are associated with a great

deal of uncertainty. Under some conditions the professional

penetration tester will need man years of effort required to find a

zero-day vulnerability, i.e. the 95th percentile spans man-years.

This study does not reveal which these conditions are, but since

no crucial variables seem to be omitted from this study it is likely

that a number of favorable conditions must apply in these cases.

8 References
[1] NIST Computer Security Resource Center (CSRC), “National

Vulnerability Database,” 2011. [Online]. Available:
http://nvd.nist.gov/.

[2] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability
assessment of systems software,” in Proceedings of Annual
Reliability and Maintainability Symposium, 2005, pp. 615-620.

[3] S.-W. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya,
“Modeling vulnerability discovery process in Apache and IIS
HTTP servers,” Computers & Security, vol. 30, no. 1, pp. 50-62,
Jan. 2011.

[4] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W.
Joosen, “On the secure software development process:
CLASP, SDL and Touchpoints compared,” Information and
Software Technology, vol. 51, no. 7, pp. 1152-1171, Jul. 2009.

[5] A. Ozment, “Improving vulnerability discovery models,” in
Proceedings of the 2007 ACM workshop on Quality of protection, 2007,
pp. 6–11.

[6] R. Cooke, “TU Delft expert judgment data base,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 657-674, May
2008.

[7] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R.
Chaffin, “Empirical estimates and observations of 0day

Paper B: Effort estimates for vulnerability discovery projects

115

vulnerabilities,” in System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on, 2009, pp. 1–12.

[8] C. Cowan, “Software security for open-source systems,”
Security & Privacy, IEEE, vol. 1, no. 1, pp. 38–45, 2003.

[9] M. Howard and D. C. LeBlanc, Writing Secure Code. Redmond,
WA, USA: Microsoft Press, 2002.

[10] Y. Younan, “Efficient countermeasures for software
vulnerabilities due to memory management errors,” Katholieke
Universiteit Leuven, 2008.

[11] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” in Proceedings of
the 14th ACM conference on Computer and communications security,
2007, pp. 529–540.

[12] S. Sridhar, K. Altinkemer, and J. Rees, “Software
Vulnerabilities: Open Source versus Proprietary Software
Security,” AMCIS 2005 Proceedings, 2005.

[13] C. Payne, “On the security of open source software,”
Information Systems Journal, vol. 12, no. 1, pp. 61-78, Jan. 2002.

[14] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in USENIX, 2002,
pp. 275-288.

[15] M. D. Penta, L. Cerulo, and L. Aversano, “The life and death
of statically detected vulnerabilities: An empirical study,”
Information and Software Technology, vol. 51, no. 10, pp. 1469-
1484, Oct. 2009.

[16] S. Heckman and L. Williams, “A systematic literature review of
actionable alert identification techniques for automated static
code analysis,” Information and Software Technology, 2010.

[17] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false
alarms of buffer overflow analysis using SMT solvers,”
Information and Software Technology, vol. 52, no. 2, pp. 210-219,
Feb. 2010.

[18] S. Grimstad, M. Jorgensen, and K. Molokken-Ostvold,
“Software effort estimation terminology: The tower of Babel,”
Information and Software Technology, vol. 48, no. 4, pp. 302-310,
Apr. 2006.

[19] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to
the common vulnerability scoring system version 2.0,” in
Published by FIRST-Forum of Incident Response and Security Teams,
2007, pp. 1-23.

[20] R. T. Clemen and R. L. Winkler, “Combining probability
distributions from experts in risk analysis,” Risk Analysis, vol.
19, no. 187, pp. 187-204, 1999.

[21] R. Cooke, Experts in uncertainty: opinion and subjective probability in
science. 1991.

[22] D. J. Weiss and J. Shanteau, “Empirical Assessment of
Expertise,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 45, no. 1, pp. 104-116, 2003.

Paper B: Effort estimates for vulnerability discovery projects

116

[23] Elsevier B.V., “Scopus,” 2011. [Online]. Available:
http://www.scopus.com/.

[24] Elsevier Inc, “Engineering Village,” 2011. [Online]. Available:
http://www.engineeringvillage.com. [Accessed: 24-Feb-2011].

[25] S. T. Cavusgil and L. A. Elvey-Kirk, “Mail survey response
behavior: A conceptualization of motivating factors and an
empirical study,” European Journal of Marketing, vol. 32, no.
11/12, pp. 1165–1192, 1998.

[26] H. Kerzner, Project management: a systems approach to planning,
scheduling, and controlling, 7th ed. New York, NY, USA: John
Wiley & Sons, 2001.

[27] J. Armstrong, Principles of forecasting – A Handbook for Researchers
and Practitioners. Netherlands: Kluwer Academic Publishers
Group, 2001.

[28] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, “Statistical
methods for eliciting probability distributions,” Journal of the
American Statistical Association, vol. 100, no. 470, pp. 680-701,
2005.

[29] L. J. Cronbach and R. J. Shavelson, “My Current Thoughts on
Coefficient Alpha and Successor Procedures,” Educational and
Psychological Measurement, vol. 64, no. 3, pp. 391-418, Jun. 2004.

[30] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

[31] S. Lin, “A study of expert overconfidence,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 711-721, May
2008.

[32] H. Kerzner, Project management: a systems approach to planning,
scheduling, and controlling, 7th ed. New York, NY, USA: John
Wiley & Sons, 2001.

[33] SecurityFocus, “SecurityFocus,” 2011. [Online]. Available:
http://www.securityfocus.com/. [Accessed: 25-Feb-2011].

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

117

Paper C:

Estimates of success

rates of remote arbitrary

code execution attacks
Teodor Sommestad, Hannes Holm and Mathias Ekstedt

Abstract

Purpose: To identify the importance of the factors that influence the

success rate of remote arbitrary code execution attacks. In other words,

attacks which use software vulnerabilities to execute the attacker’s own

code on targeted machines. Both attacks against servers and attacks

against clients are studied.

Design/methodology/approach: The success rates of attacks are

assessed for 24 scenarios: 16 scenarios for server-side attacks and 8 for

client-side attacks. The assessment is made through domain experts and

is synthesized using Cooke’s classical method, an established method

for weighting experts’ judgments. The variables included in the study

were selected based on the literature, a pilot study, and interviews with

domain experts.

Findings: Depending on the scenario in question, the expected success

rate varies between 15 and 67 percent for server-side attacks and

between 43 and 67 percent for client-side attacks. Based on these

scenarios, the influence of different protective measures is identified.

Practical implications: The results of this study offer guidance to

decision-makers on how to best secure their assets against remote code

execution attacks. These results also indicate the overall risk posed by

this type of attack.

Originality/value: Attacks that use software vulnerabilities to execute

code on targeted machines are common and pose a serious risk to most

enterprises. However, there are no quantitative data on how difficult

such attacks are to execute or on how effective security measures are

against them. This study provides such data using a structured technique

to combine expert judgments.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

118

1 Introduction
The presence of software vulnerabilities in information systems

is an important source of risk. Software vulnerabilities can be

exploited by adversaries to gain access to sensitive information,

to abuse functionality or to consume other system resources. In

some cases, it is possible to remove a vulnerability by applying a

software patch. In other cases, this type of removal is not

possible, either because the vendor has not issued such a patch

or because the vendor and the public are unaware of the

vulnerability’s existence. Also, in many cases, the cost or risk

associated with applying a patch (e.g., the service being

unavailable during the patching process) hinders the

management from applying the patch in a timely fashion.

Software vulnerabilities that can be used to obtain remote

control over a machine belong to the most severe examples.

Such vulnerabilities are typically exploited by injecting malicious

instructions into the memory space of the software that is

running on the targeted machine and passes control of the

system to the attacker. They are collectively called “arbitrary

code vulnerabilities” and include buffer overflow vulnerabilities,

dangling pointer references, insecure use of format strings, and

integer errors [1].

The risk that an organization faces when such vulnerabilities are

present in one of their systems is contingent on the probability

that the vulnerabilities can be successfully exploited in practice.

Some vulnerabilities are by nature more difficult to exploit than

others, and it is possible to apply a number of security measures

that makes exploitation more difficult [1].

Because the risk that an organization faces is highly dependent

on the likelihood of successful exploitation, data regarding this

aspect are very valuable when performing risk analysis, e.g., of a

specific vulnerability or when using attack graph approaches

such as [2–5]. However, data on the likelihood of successful

exploitation are difficult to obtain because there are many

relevant factors for the success of the exploitation. To generalize

from observations would require tests on representative samples

of vulnerabilities in different environments, with various security

measures in place, and involving attackers who are representative

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

119

of some category of adversary. Thus, it is immensely expensive

to gain sound results through experiments, and as a

consequence, they are rarely performed. The few experiments

that have been performed on the subject have successfully

demonstrated technical limitations of measures used in isolation,

but they have not reported the difficulty of exceeding these

limitations in practice. For example, Shacham et al. [6] tested the

effectiveness of address space layout randomization under

certain conditions but do not show how often these conditions

apply in practice. Wilander and Kamkar [7] performed tests of a

few protective measures against buffer overflows of different

forms. However, without data on the attack forms used in

practice, it is difficult to derive useful success rates from this

data. Many of the tests that have been performed are of low

relevance to practitioners (e.g., network administrators) because

they evaluate defense mechanisms that are very difficult to

implement, for example, because they are not supported by

common operating systems.

Expert judgment is often used when quantitative data are

difficult to obtain from experimental studies or by other means.

Expert judgment, for example, has been used to assess the

importance of attributes that are related to critical infrastructure

risks [8] and to quantify parameters in security risk models [9].

This paper describes a study in which expert judgment was used

to quantify the success rate of remote arbitrary code execution

attacks in 24 different attack scenarios.

An important issue when eliciting expert judgment is that of

bias. In other words, experts are prone to various types of bias,

e.g., relating to their background. This study synthesizes the

judgment of 21 domain experts using an established

performance-based method known as Cooke’s classical method

[10]. This method assigns weights to domain experts’ judgments

based on their ability to estimate the true value for a number of

seed questions, that is, questions related to the subject matter

and for which the true answer is known. These seed questions

are used to identify experts who are suitable to answer the

questions of interest, i.e., experts who have both the relevant

background knowledge and the ability to express their

knowledge quantitatively. Seed questions in this study were

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

120

designed to find experts that are suitable for estimating the

success rate of remote arbitrary code exploits. The experts’

performance on these seed questions are used to weight their

assessments of the 24 attack scenarios.

The 21 domain experts assessed 16 scenarios related to server-

side attacks and 8 scenarios related to client-side attacks. These

scenarios are used to analyze the effectiveness of the various

defense mechanisms that have value for network administrators

or decision-makers in security issues. The uncertainty of these

estimates is also described. Both the research method used and

the variables included in the scenarios have been previously

tested in a pilot study [11].

2 Attack scenarios
This study quantifies the probability that remote arbitrary code

execution attacks will succeed given that they are executed. Many

variables influence whether such an attack succeeds or not. The

presence of a software vulnerability that enables the execution of

arbitrary code is a necessary condition (e.g., a buffer overflow

vulnerability [12]). Some vulnerabilities are only exploitable

under certain conditions. Two variables that are often used to

describe when a software vulnerability can be exploited are (1)

whether the vulnerability can be exploited remotely or locally

and (2) whether the attacker would need to bypass some

authentication mechanism before the vulnerability can be

exploited [13].

Furthermore, countermeasures against code execution attacks

can be deployed both on a network and a machine level. Deep-

packet-inspection firewalls and filtering proxies are two network-

based measures that can prevent the executable code from

reaching its target [14]. Measures that are deployed on a machine

level include [1] non-executable memory protection (NX), which

makes certain parts of memory impossible to use in executing

code, guard page-based countermeasures that terminate

programs that access certain parts of memory, execution

monitors that execute programs in a “sandbox” or that search

for anomalies in execution, address space layout randomizations

(ASLR), which obfuscate the memory for the attacker, and

instruction set randomizations that encrypt the program

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

121

instructions so that attackers cannot insert their own instructions

without the decryption key.

All of these protective measures have multiple implementations

and variants that are available, for example, for different

operating system platforms. However, for a variety of reasons,

they are not all used in practice. Because the aim of this research

is to construct a model that is useful for enterprise decision

makers, such as network administrators, the focus is placed on

variables that are common in practice. The list of chosen

variables was assessed by using the following: 1) literature

studies, 2) a pilot study [11], and 3) three interviews with

respondents who had significant practical experience from

arbitrary code attacks.

The chosen variables include the protection mechanisms NX

and ASLR, which are straightforward to turn on or off in

commonly used operating systems. Deep-packet-inspection

firewalls (DPI) and filtering proxies (Proxy) are also included as

variables. The latter two are also common in today’s enterprise

environments. Additionally, in server-side attacks, it is significant

if the attacker can authenticate himself as a legitimate user [14].

Because the existence of authentication mechanisms is

something that can be influenced in practice, it is included as the

variable AccessControl in the attack scenarios. Connectivity and

CraftResponse can be seen as necessary (but not sufficient)

conditions for a remote attack. If Connectivity is true, then the

attacker can connect to the service that is to be attacked; if

CraftResponse is true, then the attacker can create data that are fed

to the client. In practice, the presence of a high-severity

vulnerability (Vulnerable) is also a necessary condition for remote

code execution.

Naturally, the attacker’s competence and resources are also of

importance to the probability of successful remote code

execution. Such attacker properties are kept constant for all of

the studied attack scenarios (cf. Table 1). In other words, the

attacker is a professional penetration tester who has access to

open and commercially available tools and has one week of time

to prepare for the attack (e.g., to probe the host and tune the

exploit).

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

122

Table 1 and Figure 1 summarize all of the variables as well as the

states of these variables, which were used to create the scenarios.

The overall hypotheses are that that those variables varied over

the scenarios significantly influence the probability of success in

remote arbitrary code execution attacks, and that this model is

well-suited for predictions of success in remote arbitrary code

execution attacks.

IPS

{Yes, No}

Proxy

{Yes, No}

UserAccess

{Yes, No}

NX

{Yes, No}

ASLR

{Yes, No}

Execute

arbitrary code

through server

{Yes, No}

Execute

arbitrary code

through client

{Yes, No}

CraftResponse

{Yes}

Vulnerable

{Yes}

Connectivity

{Yes}

Attacker

{Resourceful}

Figure 1. Variables that was included in the attack
scenarios and dependencies that were investigated.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

123

Table 2. Variables included in the attack scenarios.

Variable States

studied

Description

Proxy Yes/No If a filtering proxy, e.g. a filtering web

proxy, is between the attacker server

and the client.

DPI Yes/No If a deep-packet-inspection firewall is

located between the attacker and the

targeted server.

AccessControl Yes/No If the attacker can authenticate itself as

a legitimate user of the service that is

exploited in the attack. E.g., this

variable is true if the attacked service is

the SMB service (file and printer

sharing) and the attacker is a part of the

service’s windows domain.

NX Yes/No If non-executable memory protection is

activated on the targeted machine and

used for the service attacked, e.g., DEP

on a Windows machine or PaX on a

Linux machine.

ASLR Yes/No If address space layout randomization is

activated on the targeted machine.

Vulnerable Yes The targeted software has a high-

severity vulnerability (as defined by

CVSS [13]).

Connectivity Yes The attacker can send requests to the

targeted service, e.g. because the firewall

allows such connections.

CraftResponse Yes The attacker can craft (malicious)

responses to the client, e.g., by luring

the user of a web browser to a website

controlled by the attacker.

Attacker Resource

ful

The attacker is a professional

penetration tester with access to open

and commercially available tools, and

with one week to prepare the attack.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

124

3 Synthesizing expert

judgments
There is a substantial amount of research on how to combine, or

synthesize, the judgment of multiple experts to increase the

calibration of the estimates used. These techniques include the

following: consensus methods [15], [16], the Cochran-Weiss-

Shanteau index [17], self-proclaimed expertise [18], experience

[19], certifications [19], peer-recommendations [19], and Cooke’s

classical method [10]. There is little research that compares the

accuracy that these methods yield. However, research has shown

that groups of individuals assess an uncertain quantity better

than the average expert, while the best individuals in the group

are often better calibrated than the group as a whole [20]. The

scheme used to combine judgments in this research is the one

used in the classical model of Cooke [21]. Cooke’s model is a

generic method for combining expert judgments that has been

applied to a number of different domains. Experience from

applications of Cooke’s classical method has shown that it

outperforms both the best expert and the “equal weight”

combination of estimates. In an evaluation involving 45 studies,

it performed significantly better than both alternatives in 27

studies and equally well as the best expert in 15 of the studies

[22].

In Cooke’s classical method, calibration and information scores are

calculated for the experts based on their answers to a set of seed

questions, i.e., questions for which the true answer is known at

the time of analysis. These two scores are used to define a decision

maker that assigns weights to the experts based on their

performance. These weights are used to create a single estimate

on the variables of interest – in this case, the 24 attack scenarios.

Cooke’s classical method is briefly explained in Sections 3.1, 3.2

and 3.3. The reader is referred to [21] for a detailed explanation

of the method.

3.1 Calibration score
In the elicitation phase, the experts provide individual answers to

the seed questions. The seed questions request that the

respondents specify a probability distribution for a continuous

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

125

variable for which the true value is uncertain to the respondent.

This distribution is typically specified by stating its 5th, 50th, and

95th percentile values. This set of values yields four intervals over

the percentiles [0-5,5-50,50-95,95-100] with probabilities of

p=[0.05,0.45,0.45,0.05]. Because the seeds are realizations of

these variables, a well-calibrated expert will have approximately

5% of the realizations in the first interval, 45% of the realizations

in the second interval, 45% of the realizations in the third

interval and 5% of the realizations in the fourth interval. If s is

the distribution of the seed over the intervals, then the relative

information of s with respect to p is the following: ()

 ∑ ()

 . This value indicates how surprised someone

would be if one believed that the distribution was p and then

learned that it was s.

If N is the number of samples/seeds, the statistic of 2NI(s, p) is

asymptotically Chi-square distributed with three degrees of

freedom. This asymptotic behavior is used to calculate the

calibration (Cal) of expert e as the following: ()

 (()). The calibration measures the statistical

likelihood of a hypothesis. The hypothesis tested is that

realizations of the seeds (s) are sampled independently from

distributions that agree with the expert's assessments (p).

3.2 Information score
The second score used to weight experts is the information

score, i.e., how precise and informative the expert’s distributions

are. This score is calculated as the deviation of the expert's

distribution from some meaningful background measure. In this

study, the background measure is a uniform distribution over

[0,1].

If bi is the background density for seed i∊{1,…,N} and de,i is the

density of expert e on seed i, the information score for expert e is

calculated as the following: () ∑ ()

 , which

is the relative information of the experts’ distribution with

respect to the background measure.

3.3 Constructing a decision maker
The classical method rewards experts who produce answers that

have a high calibration (high statistical likelihood) and a high

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

126

information value (low entropy). A strictly proper scoring rule is

used to calculate the weights of the decision maker. If the

calibration score of the expert e is at least as high as a threshold

value, then the expert’s weight is obtained as the following:

w(e)=Cal(e)*Inf(e). If the expert’s calibration is less than the

threshold value, the expert’s weight is set to zero, a situation that

is common in practical applications.

The threshold value corresponds to the significance level for the

rejection of the hypothesis that the expert is well-calibrated. This

value is the value that would optimize a virtual decision maker if

it were added to the expert pool and had its weight calculated as

one of the actual experts. When the threshold value is resolved,

the normalized value of the expert weights w(e) is used to

combine their estimates of the uncertain quantities of interest.

4 Method

4.1 Seed questions
Since the experts’ performance in answering the seed questions

is used to weight the experts, it is critical that the seeds are

correct and are in the same domain as the variables that are

studied. They need to be drawn from the relevant domain of

expertise but do not need to be directly related to questions of

the study [21].

Naturally, the robustness of the weights that are given to

individual experts depends on the number of seeds used.

Experience shows that eleven seed questions are more than

sufficient to see substantial differences in calibration [21].

Two types of seed questions were used in this study. For the first

type, questions (cf. #1-5 in Table 3) were drawn from the

National Vulnerability Database (NVD) [23] and concern

statistics on known vulnerabilities in software products. The

second type of question concerns the effectiveness of protective

measures for buffer overflow vulnerabilities and was taken from

[7]. Questions of the second type (cf. #5-11 in Table 3) asked

the respondents to estimate how efficient protective measures

were against 20 forms of attack that were described together

with the questions.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

127

Table 3. Seed questions and their realization values.

Question summary Realization (%)

1 How many of the high-severity vulnerabilities published in 2010

have a full impact on Confidentiality, Integrity and Availability?

57

2 How many of the medium-severity vulnerabilities published in

2010 have a full impact on Confidentiality, Integrity and

Availability?

6

3 How many of the vulnerabilities published in 2010 that can be

exploited remotely require that the attacker bypass some

authentication mechanism first?

9

4 How many of the vulnerabilities published in 2010 that can be

exploited remotely and require that the attacker bypass some

authentication mechanism first is of severity-rating high?

15

5 How many of the vulnerabilities published in 2010 that can be

exploited remotely are of severity-rating high?

52

6 What is the probability that an attack (selected randomly from the

20 listed) will be prevented if Libverify and Libsafe are used?

0

7 What is the probability that an attack (selected randomly from the

20 listed) will be halted if Libverify and Libsafe are used?

20

8 What is the probability that an attack (selected randomly from the

20 listed) will be prevented if ProPolice is used?

40

9 What is the probability that an attack (selected randomly from the

20 listed) will be halted if ProPolice is used?

10

10 What is the probability that an attack (selected randomly from the

20 listed) will be prevented if Stackguard's terminator canary is

used?

0

11 What is the probability that an attack (selected randomly from the

20 listed) will be halted if Stackguard's terminator canary is used?

15

4.2 The domain experts
Studies of expert calibrations have concluded that experts are

well-calibrated in situations with learnability and with ecological

validity [24]. Learnability is facilitated by the existence of models

of the domain of interest; the possibility of expressing judgments

in a coherent and quantifiable manner that can be verified; and

the opportunity to learn from historic predictions and outcomes.

Ecological validity is present if the expert is used to make

judgments of the type that are requested.

In the context of this study, the above reasoning implies that

good candidates are researchers and penetration testers in the

security field. These individuals can be expected to be

experienced in reasoning about the success or failure of attacks

under different conditions and are expected to observe the

outcomes of attempts. They also make judgments in their line of

work (i.e., provide ecological validity).

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

128

To identify suitable respondents, articles published in the

SCOPUS database [25], INSPEC or Compendex [26] between

January 2005 and September 2010 were reviewed. Authors who

had written articles in the information technology field with any

of the words: “remote code execution”, “run arbitrary code”,

“execute arbitrary code”, “arbitrary code execution”, “buffer

overflow”, “buffer overrun” or “exploit code” in the title,

abstract or keywords were identified. If their contact information

could be found, they were added to the list of potential

respondents, resulting in a sample of 964 individuals.

After the exclusion of individuals for which no contact

information could be found and a manual review of their

publications’ topicality, a sample of 545 individuals was assessed.

Contact information for approximately 110 of these individuals

turned out to be incorrect or outdated, resulting in

approximately 445 invitations reaching their destination.

A web survey was conducted during five weeks in December

2010 to January 2011. Out of approximately 445 researchers who

were invited to take the survey, 119 opened it and 19 submitted

answers to the survey’s questions. A response rate of this

magnitude is to be expected of an advanced survey such as this

one. As recommended by [27], motivators were presented to the

respondents invited to the survey: i) helping the research

community as whole, ii) the possibility to win a gift certificate for

academic literature, and iii) being able to compare their answers

to other experts after the survey was completed. One respondent

provided contradictory and incomplete answers to the questions.

After being unsuccessful in confirming these answers with this

respondent, the respondent was excluded from further analysis,

resulting in 18 usable surveys from researchers.

Additionally, practitioners were identified based on peer

recommendations from notable practitioners in Sweden. Three

practitioners, all with substantial experience in security exploits,

participated in the study. Because practitioners are less likely to

be as familiar with questionnaires in general and probability

density functions in particular, these three respondents were

given instructions on how to answer the survey during personal

meetings in February and March 2011. Apart from the personal

meetings, the participating practitioners answered the

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

129

questionnaire in the same manner as the invited sample of

researchers.

Thus, together with the three practitioners’ surveys, the total

number of respondents was 21.

4.3 Elicitation instrument
The web survey comprised four parts, each beginning with a

short introduction to the section. First, the respondents were

given an introduction to the survey that explained the purpose of

the survey and its outline. In this introduction, they confirmed

that they were the person who had been invited and provided

information about themselves, e.g., their number of years of

experience in the field of research. Second, the respondents

received training regarding the answering format used in the

survey. After confirming that this format was understood, the

respondents proceeded to its third part. Third, both the seed

questions and the questions of the study were presented to the

respondents. Finally, the respondents were asked to provide

qualitative feedback on the survey and the variables that it

covered.

Questions in section 3 of the survey were described through

scenarios that detailed conditions for an attack. Summaries of

the scenarios in the seed questions can be found in Table 1;

conditions for the scenarios of interest in this study are

described in section 2 of the paper.

For each scenario, the respondent was asked to provide a

probability distribution that expressed the respondent’s belief.

As is customary in applications of Cooke’s classical method (cf.

Section 3), this probability distribution was specified by setting

the 5th percentile, the 50th percentile (the median), and the 95th

percentile for the probability distribution. In the survey, the

respondents specified their distribution by adjusting sliders or

entering values to draw a dynamically updated graph over their

probability distributions. The three points specified by the

respondents defined four intervals over the range [0, 100]. The

use of graphical formats is known to improve the accuracy of

elicitation [28]. Figures and colors were also used to complement

the textual questions and to make the questions easier to

understand. In Figure 2, the format presented to respondents is

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

130

exemplified. A larger, generic figure that described the survey’s

variables could also be found at the top of each section, along

with introductory text.

Elicitation of probability distributions is associated with a

number of issues [28]. Efforts were therefore made to ensure

that the measurement instrument was of sufficient quality. After

careful construction, the survey was qualitatively reviewed during

a personal session with an external respondent representative of

the population. This session was divided into two parts. First,

the respondent was given the task of filling in the survey, given

the same amount of information as someone doing it remotely.

After this task, discussions followed regarding the instrument

quality. The qualitative review resulted in some minor

improvements with respect to the phrasing of questions.

Figure 2. Example of the question-and-answer format of
the survey.

Before this qualitative review, the question format had been

tested in a pilot study on other security parameters. In that pilot

study, a randomized sample of 500 respondents was invited; 34

of these respondents completed the pilot during the week it was

open. The questions in this pilot survey were presented in the

same way as in the present survey. A reliability test using

Cronbach’s alpha (Cronbach and Shavelson, 2004; Cronbach,

1951) was performed using four different ways to phrase the

questions for one variable. Results from this test showed a

reliability value (alpha) of 0.817, which indicated good internal

consistency of the instrument.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

131

5 Results

5.1 Respondents’ performance
As in many other studies that involve expert judgment, many of

the experts were poorly calibrated on the seed questions. Their

calibration scores varied between 3.211*10-14 and 0.6362, with a

mean of 0.004255, and their information scores varied between

0.0658 and 1.847, with a mean of 0.7879.

Cooke’s classical method aims to identify those respondents

whose judgment is well calibrated and informative. The virtual

decision maker was optimized at a threshold level (significance

level) of 0.0007985. Four experts passed this threshold level and

were assigned weights. They received the weights 0.8459, 0.1279,

0.02483, and 0.001361 after normalization. All four were

researchers; their average experience from research on arbitrary

code attacks was 12 years. As noted in Section 3.3, it is not

uncommon that a substantial number of respondents receive a

weight of zero with this method.

5.2 Success rates of arbitrary code

execution attacks
The respondents’ weights were used to construct the estimates

of the virtual decision maker’s estimates of success rates. In

other words, the estimates described in this section represent the

estimate of a virtual expert that is obtained by weighting the

individual estimates of the respondents according to Cooke’s

method. The estimated distributions were assumed to be

distributed in the same way that they were presented to the

respondents, i.e., as depicted in the histograms over the four

ranges that they constructed with their answers (c.f. Section 4.3).

Note that certain variables are kept constant over the scenarios

(c.f. Section 2).

5.2.1 Server-side attacks

As depicted in Table 3, the synthesized estimates show clear

differences among the scenarios. The median for the scenarios

varies between 10 and 75 percent; the value at the 5th percentile

varies between 1 and 17 percent, and the value at the 95th

percentile varies between 48 and 94 percent. As one might

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

132

expect, scenario 1 has the lowest median (10%) and expected

(15%) success rate. Scenario 16 has, as one might expect, the

highest success rate.

Table 4. Attack scenarios for server-side attacks.

Scenario Access

Control

DPI NX ASLR Low

(5%)

Median

(50%)

High

(95%)

Expected

(Mean)

1 Yes Yes Yes Yes 1 10 51 15

2 Yes Yes Yes No 4 15 60 20

3 Yes Yes No Yes 6 20 62 24

4 Yes Yes No No 6 26 69 32

5 Yes No Yes Yes 4 21 48 24

6 Yes No Yes No 4 25 56 27

7 Yes No No Yes 4 30 63 33

8 Yes No No No 5 41 86 43

9 No Yes Yes Yes 7 36 79 41

10 No Yes Yes No 7 38 79 41

11 No Yes No Yes 5 27 68 31

12 No Yes No No 14 69 94 65

13 No No Yes Yes 11 45 88 48

14 No No Yes No 14 66 89 59

15 No No No Yes 15 50 89 52

16 No No No No 17 75 94 67

5.2.2 Client-side attacks

Table 5 lists the virtual decision maker’s estimates for the eight

attack scenarios considered for client-side attacks. In terms of

the expected success rate, the difference between the most

secure scenario (#17) and the least secure scenario (#24) is 24

percentiles. The low success rates associated with the server-side

attacks where the attacker cannot gain user access is not present

in these scenarios – the data received by the client are implicitly

trusted by it.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

133

Table 5. Attack scenarios for client-side attacks.

Scenario Proxy NX ASLR Low

(5%)

Median

(50%)

High

(95%)

Expected

(Mean)

17 Yes Yes Yes 7 38 84 43

18 Yes Yes No 10 43 89 47

19 Yes No Yes 12 48 94 52

20 Yes No No 15 53 94 55

21 No Yes Yes 4 54 95 56

22 No Yes No 15 58 94 59

23 No No Yes 18 63 95 62

24 No No No 20 72 95 67

5.3 Variables’ influence on the

success rate of exploits
This study varies four variables in each set of scenarios. The

variation over the scenarios supports the hypothesis that these

variables are relevant for the success rate. Table 5 shows their

mean influence on the estimates. These values are the mean

difference obtained when comparing scenarios in which the

variable is in the state of “true” with those scenarios in which the

variable is in the state “false” and all other variables remain in

the same state. For example, the values for AccessControl in the

server-side scenarios are obtained as the mean value of the

difference between the following scenarios: 1 and 9; 2 and 10; 3

and 11; and so on. A combination of variables (e.g., “DPI &

NX”) shows the mean influence that the combination has when

compared to the individual influences that they have alone. A

positive value for a combination indicates that the measures

cancel each other out to an extent; a negative value indicates that

the combined measures complement each other and that the

joint effect is greater than the sum of the individual measures.

As can be seen from Table 5, restriction of access influences

server-side attacks the most wheras the presence of a filtering

proxy shows the most influence on client-side attacks. The

respondents seem to perceive the studied variables as fairly

independent, i.e., the effects from combinations of them are

small.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

134

Table 6. Mean influence of the variables on the success rate
(in percent).

Scenario Variable Low
(5%)

Median
(50%)

High
(95%)

Expected
(Mean)

Server AccessControl -7.00 -27.25 -23.13 -23.25

DPI -3.00 -14.00 -6.38 -10.50

NX -2.50 -10.25 -9.38 -9.00

ASLR -2.25 -14.50 -9.88 -10.75

AccessControl & DPI +3.00 +2.50 +3.63 +1.50

AccessControl & NX +0.50 -1.25 -6.88 -2.50

AccessControl & ASLR +1.25 +8.00 -1.88 +4.25

DPI & NX -0.50 -0.50 +3.38 +0.25

DPI & ASLR -0.75 +0.75 -0.63 -1.00

AccessControl & DPI & NX -1.00 +1.50 +2.88 +0.75

AccessControl & DPI & ASLR +0.25 +0.25 +4.38 +1.00

DPI & NX & ASLR +0.75 +3.75 +0.63 +3.25

AccessControl & DPI & NX & ASLR -1.75 -5.25 -4.88 -4.25

Client Proxy -3.25 -16.25 -4.50 -11.75

NX -7.25 -10.75 -4.00 -7.75

ASLR -4.75 -5.75 -1.00 -3.75

Proxy & NX +2.25 +0.75 -3.50 -0.75

Proxy & ASLR +1.75 +0.75 -1.50 +0.25

NX & ASLR -2.25 +1.25 -1.0 +0.25

Proxy & NX & ASLR +2.25 -1.25 -1.5 -0.75

6 Discussion

6.1 The expert judgment analysis
Eleven seed questions were used to evaluate the calibration and

information scores. These seed questions are of two types. The

first type of seed question is drawn from a vulnerability database

and concerns the characteristics of known vulnerabilities. The

second type is drawn from an empirical peer-reviewed study [7]

on the types of exploits that different countermeasures protect

against. Both of these types of questions are strongly related to

the expertise that is required to answer the question of interest.

A concern about the survey’s validity could be that these sources

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

135

are available to the respondents, who could have used them to

identify the answers to the seed questions. However, no

indications of this concern were seen in the answers received or

in the feedback from the respondents.

The calibration scores show that many experts in the field are

poorly calibrated, i.e., their estimates do not match empirical

observations well. This observation suggests that sorting out

well-calibrated experts is worthwhile. Four respondents were

assigned weights when the virtual decision-maker was optimized.

When using this method to assign weights, it is appropriate to

perform a robustness test on the solution [21]. These tests are

performed with respect to both seed variables and experts by

removing one at a time and by investigating the impact of the

omission [21]. Such tests were performed and no undue

influence was identified.

6.2 Validity and reliability of the

elicitation instrument
Cooke [21] suggests that seven guidelines should be used when

data are elicited from experts: i) formulate clear questions, ii) use

an attractive format for the questions and a graphical format for

the answers, iii) perform a dry run, iv) have an analyst present

during the elicitation, v) prepare an explanation of the elicitation

format and how answers will be processed, vi) avoid coaching

and vii) keep elicitation sessions to less than one hour long.

This study follows all of these guidelines except for iv), which is

to have an analyst present during the elicitation. The invited

researchers were given contact information to the research group

when invited to the survey, which they were encouraged to use if

any questions arose. Practitioners were also introduced to the

survey format personally. However, it is possible that the

physical absence of the analysts suppressed some potential issues

from being brought up during the elicitation. In the survey, the

respondents were asked to comment on the clarity of the

questions and the question format used. Based on the comments

received, it appears as though the questions and the assumptions

were fully understood.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

136

6.3 Variables of importance to the

success rate
The models used to describe attack scenarios in this study

contained four variables for server-side attacks and three

variables for client-side attacks. All these variables have an

influence on the success rate. The result shows that the most

influential countermeasures against server-side attacks are to

make certain that attackers do not obtain access credentials to

the service. If the attacker does not have access rights for the

service, the expected success rate is decreased by 23 percentiles

on average. However, restricting access can be difficult, for

example, in the case of public services. Address space layout

randomization, non-executable memory, and deep-packet

inspection also lower the attack success rate significantly. Taken

together, these three countermeasures lower the expected

success rate by 26-28 percentiles. For client-side attacks, a

filtering proxy is the most effective; address space layout

randomization and space execution prevention is less potent

than on server-side attacks.

The scenarios estimated in this study did not specify all of the

variables that could be relevant. The undefined variables (e.g.,

the type of service that is vulnerable) certainly vary among and

within enterprises. As a result, it is impossible to say how much

of the uncertainty arises from variations among unspecified

variables in enterprises (i.e., aleatory uncertainty) and how much

arises from the expert’s lack of knowledge about arbitrary code

attacks (i.e., epistemic uncertainty). However, it is reasonable to

expect that both types of uncertainty contribute to the spread of

the estimated intervals.

The variables included in this study were drawn from the

literature with the assistance of domain experts with practical

experience from arbitrary code execution attacks and the

effectiveness of several of those variables was evaluated in a

quantitative pilot study [11] The hypothesis was that these

variables make up a good model for predicting the probability of

successful remote arbitrary code execution. The respondents of

the survey were asked to improve this model by replacing one of

the variables with a new variable of their own choice. Three of

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

137

the respondents suggested changes to the model. In terms of the

calibration score, these three variables are ranked third, eighth

and eighteenth. Two of those respondents (ranked third and

eighth) suggested that the implementation of NX should be

detailed in the model, e.g., if it is the implementation for Linux

Red Hat 4.1 or Windows XP SP2. One respondent (ranked

eighteenth) would like to replace ASLR with the existence of a

host-based intrusion detection system in the targeted machine.

The fact that only three of the 21 respondents suggested changes

to the model indicates that it successfully captured the most

important variables. However, future work in this field could add

more detail to the scenario descriptions to identify the

differences between different NX implementations and to

investigate the impact of host-based intrusion detection.

7 Conclusions
The synthesized judgment of domain experts is that the most

effective measure against server-side arbitrary code execution

attacks is to implement access controls that limit the

functionality that attackers can use. However, deep-packet

inspection firewalls and measures available in operating systems

(ASLR and NX) also lower the probability of successful

compromise. For client-side attacks, where an application client

is exposed to malicious data, the most effective countermeasure

is the use of a filtering proxy. Operating system measures do not

have as strong effects on attacks against clients. Decision-makers

in enterprises should consider these effects when they

contemplate measures against code injection attacks.

However, while these synthesized judgments provide valuable

input to decision-makers and researchers, they come with a

substantial amount of uncertainty. Further research could add

more detailed variables to the attack scenarios to remove aleatory

uncertainty. Also, this would enable more detailed data collection

from experiments or observations to remove epistemic

uncertainty. The results from this study can provide valuable

information to future studies in this direction e.g., the

approximate importance of the studied variables and that they

are perceived to be fairly independent.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

138

8 References
[1] Y. Younan, “Efficient countermeasures for software

vulnerabilities due to memory management errors,” Katholieke
Universiteit Leuven, 2008.

[2] D. Patsos, S. Mitropoulos, and C. Douligeris, “Expanding
topological vulnerability analysis to intrusion detection through
the incident response intelligence system,” Information
Management & Computer Security, vol. 18, no. 4, pp. 291-309,
2010.

[3] T. Sommestad, M. Ekstedt, and P. Johnson, “A Probabilistic
Relational Model for Security Risk Analysis,” Computers &
Security, 2010.

[4] R. Sawilla and X. Ou, “Identifying critical attack assets in
dependency attack graphs,” in 13th European Symposium on
Research in Computer Security (ESORICS), 2008, no. 0716665, pp.
18-34.

[5] J. Homer, K. Manhattan, X. Ou, and D. Schmidt, “A Sound
and Practical Approach to Quantifying Security Risk in
Enterprise Networks,” Kansas, 2010.

[6] H. Shacham, M. Page, B. Pfaff, E. J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space
randomization,” in Proceedings of the 11th ACM conference on
Computer and communications security, 2004, pp. 298–307.

[7] J. Wilander and M. Kamkar, “A comparison of publicly
available tools for dynamic buffer overflow prevention,” in
Proceedings of the 10th Network and Distributed System Security
Symposium, 2003, pp. 149–162.

[8] R. Cooke and L. Goossens, “Expert judgement elicitation for
risk assessments of critical infrastructures,” Journal of Risk
Research, vol. 7, no. 643–656, 2004.

[9] J. J. C. H. Ryan, T. a. Mazzuchi, D. J. Ryan, J. Lopez de la
Cruz, and R. Cooke, “Quantifying information security risks
using expert judgment elicitation,” Computers & Operations
Research, pp. 1-11, Dec. 2010.

[10] R. Cooke, Experts in Uncertainty: Opinions and Subjective Probability
in Science. New York, New York, USA: Open University Press,
1991.

[11] H. Holm, T. Sommestad, M. Ekstedt, and U. Franke, “Expert
assessment on the probability of successful remote code
execution attacks,” in Proceedings of 8th International Workshop on
Security in Information Systems - WOSIS, 2011.

[12] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer

Overflows : Attacks and Defenses for the Vulnerability of the
Decade,” in Foundations of Intrusion Tolerant Systems, 2003
[Organically Assured and Survivable Information Systems], 2003, pp.
227-237.

[13] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to
the common vulnerability scoring system version 2.0,” in

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

139

Published by FIRST-Forum of Incident Response and Security Teams,
2007, pp. 1-23.

[14] K. Scarfone and P. Mell, “Guide to intrusion detection and
prevention systems,” Gaithersburg, MD, USA, 2007.

[15] A. Fink, J. Kosecoff, M. Chassin, and R. H. Brook,
“Consensus methods: characteristics and guidelines for use.,”
American journal of public health, vol. 74, no. 9, pp. 979-83, Sep.
1984.

[16] A. H. Ashton, “Does consensus imply accuracy in accounting
studies of decision making?,” The Accounting Review, vol. 60, no.
2, pp. 173–185, 1985.

[17] D. J. Weiss and J. Shanteau, “Empirical assessment of
expertise,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 45, no. 1, p. 104, 2003.

[18] M. J. Abdolmohammadi and J. Shanteau, “Personal attributes
of expert auditors,” Organizational Behavior and Human Decision
Processes, vol. 53, no. 2, pp. 158–172, 1992.

[19] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-based assessment of expertise: How to decide if
someone is an expert or not,” European Journal of Operational
Research, vol. 136, no. 2, pp. 253–263, 2002.

[20] R. T. Clemen and R. L. Winkler, “Combining probability
distributions from experts in risk analysis,” Risk Analysis, vol.
19, no. 187, pp. 187-204, 1999.

[21] R. M. Cooke, Experts in Uncertainty: Opinions and Subjective
Probability in Science. New York, New York, USA: Open
University Press, 1991.

[22] R. M. Cooke, “TU Delft expert judgment data base,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 657-674, May
2008.

[23] U. S. D. of C. NIST Computer Security Resource Center
(CSRC), “National Vulnerability Database,” 2011. [Online].
Available: www.nvd.nist.org. [Accessed: 28-Apr-2011].

[24] F. Bolger and G. Wright, “Assessing the quality of expert
judgment: Issues and analysis,” Decision Support Systems, vol. 11,
no. 1, pp. 1-24, Jan. 1994.

[25] Elsevier B.V., “Scopus,” 2011. [Online]. Available:
http://www.scopus.com/.

[26] Elsevier Inc, “Engineering Village,” 2011. [Online]. Available:
http://www.engineeringvillage.com. [Accessed: 24-Feb-2011].

[27] S. T. Cavusgil and L. A. Elvey-Kirk, “Mail survey response
behavior: A conceptualization of motivating factors and an
empirical study,” European Journal of Marketing, vol. 32, no.
11/12, pp. 1165–1192, 1998.

[28] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, “Statistical
methods for eliciting probability distributions,” Journal of the
American Statistical Association, vol. 100, no. 470, pp. 680-701,
2005.

Paper C: Estimates of success rates of remote arbitrary code

execution attacks

140

[29] L. J. Cronbach and R. J. Shavelson, “My Current Thoughts on
Coefficient Alpha and Successor Procedures,” Educational and
Psychological Measurement, vol. 64, no. 3, pp. 391-418, Jun. 2004.

[30] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

141

Paper D:

Quantifying the

effectiveness of intrusion

detection systems in

operation through

domain experts
Teodor Sommestad, Hannes Holm, Mathias Ekstedt and Nicholas

Honeth

Abstract

An intrusion detection system is a security measure that can help

system administrators in enterprise environments to detect

attacks made against networks and their hosts. Evaluating the

effectiveness of IDSs by experiments or observations is however

difficult and costly. This paper describes the result of a study

where 165 domain experts in the intrusion detection field

estimated the effectiveness of 24 different scenarios pertaining to

detection of remote arbitrary code exploits.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

142

1 Introduction
Enterprise information systems are essential to most

organizations. They store important information and facilitate

both critical and supportive business processes. Enterprise

information systems are also complex and comprise

infrastructure, application software, business processes, and

humans. These heterogeneous and dynamic environments are at

constant risk from external and internal attacks. To secure these

complex systems is difficult. Best practice in system security

management involves application of a wide range of measures.

Intrusion detection systems (IDS) are promising security

measures that are commonly used to defend information systems

[1]. An IDS monitors a computer network or its hosts to detect

attacks made against them. Once attacks are identified,

administrators can be notified and appropriate actions can be

performed. Since IDSs can detect a wide range of attacks they

may be used to monitor entire computer networks where they

can complement other enterprise security measures on

enterprise-level.

However, IDSs are not perfect. They fail to detect attacks that

take place and raise alarms for events that are not actual attacks.

In practice a detection rate must be traded off against the false

alarm rate for the IDS. The effectiveness of an IDS can be

determined after such a trade-off has been made. In this paper

effectiveness is defined as in [2]: the probability that the

administrator reacts appropriately when an attack occurs.

The development of models and techniques for IDSs dates back

three decades [3], [4] and even though there exist a wide range of

IDS solutions on the market today, IDSs are still a viable

research field and much improvement is needed before they

operate perfectly. How effective an enterprise’s IDS is in

different operating conditions is largely unknown. Several

variables are believed to impact the effectiveness of an IDS in

operation. For example, if the rules or models of IDS are

updated, if the IDS has been tuned for its environment, and if it

is host based or network based [5]. For a decision-maker who

considers installing or adjusting an IDS, the impact of such

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

143

variables are of high relevance to guide them in making effective

system design decisions.

Quantitative studies have been made on some such aspects. For

example, the impact of tuning configuration parameters in

certain platforms [6], how the detection rate depends on its

host’s hardware performance [7], or how well different IDS

products detect network scans [8]. Many qualitative evaluations

(e.g., [9]) are also available. Investigating the effectiveness of

IDSs and different IDS configurations in realistic environments

is, however, difficult and costly. For instance, an extensive

comparative study of 18 different IDSs was made during 1998

and 1999 by the Lincoln Laboratory at MIT [10], [11]. However,

significant shortcomings have been identified in this study by

[12], for example with the realism of the background data used

during the tests. In general, several challenges have been

identified for empirical tests of IDSs [13], [14]. As a

consequence, few reliable empirical studies on the effectiveness

of IDSs can be found. In fact, the only study which addresses

their operational effectiveness is the experiment described in

[15]. Although the experiment described in in [15] was associated

with considerable cost it is limited to a large set of assumptions,

e.g., concerning the attacks to be detected and how the IDS is

managed. The absence of such guidance impedes effective use of

this type of system in enterprises.

Expert judgment is often used when quantitative data is difficult

to obtain from empirical studies or by other means. It has been

used to assess the importance of attributes related to critical

infrastructure risks [16], to quantify uncertainties related to crops

[17] and recently to assess strategies related to security [18].

More examples of successful applications can be found in [19].

This paper describes a study in which a survey was used to

collect expert judgment that quantifies the effectiveness of

signature based IDSs in different operational scenarios. The

experts in this study are researchers in the IDSs field who used

their domain knowledge to assess whether arbitrary code

execution attacks would be detected by an administrator. These

assessments were made for 24 different operational scenarios.

The respondents’ judgments was synthesized with an established

method that assigns weights to domain experts’ judgment based

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

144

on their performance on a number of test questions. The

uncertainty of these estimates and the practical issues related to

the implementation of different scenarios are also described.

The paper is structured as follows. Section two presents the

operational scenarios that were investigated and the variables

used to specify these. In section three Cooke’s classical method

for expert judgement is explained. This method is used to sort

out experts that produce calibrated assessments. Section four

presents the data collection method. Section five presents the

results are estimates of IDS’s effectiveness in 24 operational

scenarios, and variables influence on this effectiveness. In

section six these results are discussed and in section seven

conclusions are drawn.

2 Operational scenarios – a

prediction model for IDS
effectiveness

The quality of IDSs can be evaluated by a number of criteria

[20]. In accordance with Axelsson’s [2] definition of

effectiveness, this research investigates the probability that actual

attacks are detected and reacted upon by the administrator

monitoring the IDS. The attacks for which effectiveness is

investigated in this study are the types of attack where arbitrary

code is remotely executed on the targeted machine. A number of

operational scenarios for IDSs were investigated. These

operational scenarios were specified by selecting a number of

variables based on a literature review and consultation with three

security experts working in the field of IDSs. A summary of the

variables identified in the literature review is presented in section

2.1; the variables used in the present study are described in and

2.2.

2.1 Literature review
A plethora of detection methods and techniques have been

introduced since the work began on intrusion detection in the

1980’s with work as [3] and [4]. A number of articles divide these

into broad classification schemes. A common division is made

between anomaly based intrusion detection and signature (or

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

145

misuse) based intrusion detection [20–22]. Anomaly based

intrusion detection estimates the normal behaviour of a system

and generates an alarm when the deviation from the normal

exceeds some threshold [22]. Signature based schemes look for

patterns (signatures) in the analysed data and raise an alarm if the

patterns match a known attacks [22]. Some classifications also

distinguish specification based engines from these two schemes

[9]; others regard specification-based engines as a subset to

anomaly based detection [21]. In specification based engines

activity that deviates from predefined constraints (e.g.,

descriptions of correct behaviour) would cause alarms. Hybrids

or compound solutions are also possible [5], [21].

Anomaly based detection schemes have been given most of the

attention in recent research on intrusion detection systems. [22]

describes techniques used by these systems to detect anomalies

such as: statistical based, knowledge based or machine learning

based. [20] divide them into: statistical, sequence matching and

learning, predictive pattern generation and neural networks.

Signature based detection schemes also come in different

variants. [21] divides them into: state-modelling, expert system,

string matching and simple rule based. [20] divides them into:

expert systems, keystroke monitoring, model based, state

transition analysis and pattern matching. While most research

has been performed on anomaly based detection in recent years,

most IDSs that are commercially available and used in practice

are signature based [23].

The detection model can make a difference to the effectiveness

of an IDS. It is often noted that signature based detection only

detects attacks that correspond to known signatures while

anomaly based detection also can detect previously unknown

attack types (see for example [22]). The coverage, i.e., the attack

types the IDS can detect, is of obvious relevance to the

effectiveness in practice [12], [14]. The algorithm used also

makes a difference. For instance, [24] compares a number of

anomaly detection algorithm and show a clear difference in their

performance. Much research effort has been dedicated to

algorithms for detection. However, a wide range of other

variables are also of importance to the effectiveness of

operational IDSs.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

146

Whether sensors are placed on network hosts, in the network

infrastructure, or on both, make a difference [5]. Another

variation with a potential impact is if sensors are placed so that

they listen to the network passively (e.g., through a spanning

port or network tap) or if it is placed inline so that all traffic

must go through it [5], [25]. Host based sensors could also be

placed inside or outside the code they are supposed to monitor

and as this influences what the sensor can monitor it will also

have an impact on the effectiveness [25]. The protocols,

protocol layers and the amount of traffic which the IDS can

handle are also of relevance [5], [14]. Furthermore, the

environment which the sensors are placed in can be expected to

influence the effectiveness [12], [14]. Complex and intensive

network traffic may for example give rise to higher instances of

false alarms and make it difficult for the IDS to identify actual

attacks.

There are, in addition to detection mechanism, the placements of

sensors and the environment, a number of variables related to

deployment and management of the IDS that can be expected to

influence its performance. Configuration and tuning is of

importance to both anomaly based and signature based intrusion

detection [5]. Configuration parameters include: thresholds and

alert settings to optimize false positives and false negatives [5],

[26], tuning and customizing the system for its environment [5],

[26] and securing the actual IDS from attacks [5], [14].

Deploying an IDS correctly is generally challenging and as a

consequence the competence of system administrators is an

important factor [5], [26]. For example, the administrators’

programming skills and their knowledge about the environment

where they are supposed to deploy the IDS on are of relevance

[5], [26].

After deployment the detection system needs to be maintained

and managed. Updating the system and its engine to the latest

version is part in this management process [5]. For signature

based detection system it is of the essence to maintain the

signature database updated [5]. Periodic testing of the IDS’s

functionality has also been suggested [5].

Alarm lists may comprise of as much as 99 % false alarms and

methods that assist the administrator in identifying actual attacks

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

147

are therefore important [27]. The abovementioned variables

influence the amount of false alarms that are raised by the IDS

and the amount of attacks it misses. In the end, however, an

administrator must be able to distinguish actual attacks from

false positives and decide what to react upon. It is the

effectiveness achieved in this stage that is investigated in this

paper. In [28] design recommendations have been put forward

to ease the cognitive burden placed on administrators using

visualization. Research in this field (e.g., [29], [30]) has presented

different techniques for visualization. While visualization of

alarms and the network’s status can help the administrator, the

competence of this person is also an important factor. [31] have

found that administrators require expertise in networking,

security, and a portion of situated expertise (e.g., about the

enterprise to work in) to solve their task. Moreover, they are

often faced with problems that are not predefined and change as

the environments evolve [31].

2.2 Variables specified in the
assessed scenarios

As described in section 2.1 there are numerous variables that

may influence the effectiveness of an IDS in operation. One

could specify operational scenarios by assigning values to all of

these variables, e.g., regarding the employed algorithm(s), the

competence of the operators and the profile of the background

traffic. However, doing so would only show the value of these

exact configurations and limit the validity of the result to these

particular cases. Collecting such detailed information in an

enterprise-context would also be extremely expensive and

prediction models requiring this level of detail would be

expensive to use. Also, as shown by the critique against

experimental efforts [12], it is difficult to identify all variables

that are of relevance and make sure that they are representative

for typical operations.

This study aims to provide approximate values for IDSs’

effectiveness and the approximate importance of a number of

important variables related to them. To maintain generality of

the estimates produced it focuses on a number of carefully

selected variables and let the greater majority of variables vary as

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

148

they typically do in an enterprise environment. The variation

between enterprises of variables that influence effectiveness (e.g.,

how competent administrators are) will make the exact

effectiveness uncertain as it will vary from enterprise to

enterprise. This uncertainty is managed by expressing the

effectiveness through a probability distribution that captures the

uncertainty caused by this noise. Hence, for each operational

scenario the experts were asked to provide estimates of

effectiveness in terms of a probability distribution that was

representative for enterprises, given that unspecified variables

vary as they do in practice.

The selection of variables to include in the operational scenarios

was made by consulting three experts on IDSs. These domain

experts were presented with a list of variables and were asked to

complement this list with other variables they found important.

They were then asked to prioritize these variables based on their

utility for making predictions on the effectiveness of an intrusion

detection solution used in practice. As the selected variables were

to be used for predictions the respondents were asked to not

only consider their impact on the effectiveness, but also the

system owner’s possibility to identify their values for an

installation. The respondents were also asked to identify

meaningful assumptions which would have a limited effect on

the usability of the result. That is, assumptions about conditions

that apply to most enterprises or for other reasons correspond to

scenarios of interest to decision makers in enterprises. Based on

this prioritization procedure two conditions were assumed and

five variables were selected, forming the model depicted in

Figure 1.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

149

IDS

effectiveness

Use of NIDS

Use of HIDS

Solution

tuned

Rules

updated

Vulnerability

patchable

Figure 1. Variables studied.

Assumptions were made on the conditions of the attack

scenarios they are exposed to and the detection scheme used by

the IDS. The attack scenario was specified as remote arbitrary

code exploit performed by a professional penetration tester with

the possibility to spend one week on preparing the attack. Thus,

the attacker exploits a software vulnerability in order to execute

code on the targeted system. The professional penetration tester

should be assumed to be an outsider. The detection scheme was

assumed to signature based. The domain experts experience was

that the vast majority of IDSs installed in enterprises today use

this detection scheme as it is more mature. They were therefore

considered more interesting for decision makers to assess. Table

1 describes the five variables that were used to describe the

different operational scenarios. In total 24 different operational

scenarios are investigated, each corresponding to a specific

configuration of the five variables.

Two of the five variables concern the placement of sensors – if

the IDS is host or network based. Another variable selected by

the domain experts was the tuning of the IDSs. Whether they

were tuned for their environments or not was therefore included

as one variable. Updates of signatures used by the detections

system was regarded as an important variable. Finally, the type of

vulnerability that was to be exploited was judged to be

important. A signature based IDS is presumably less effective in

scenarios with unknown attacks, as noted in section 2.1. In this

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

150

model the vulnerability-type exploited is captured by considering

scenarios where the attack is possible to patch with a software

update (i.e., is well-known vulnerabilities) as well as scenarios

where the exploit uses software vulnerabilities for which no

patch is available. This variable was more highly prioritized than

the exact signature match to exploits used by the attacker due to

the fact that details on the latter are difficult to collect in

practice.

All possible combinations of these five variables are considered

except for those where there is neither a network based IDS or a

host based IDS. This resulted in the 24 scenarios described in

Table 3. Each of these corresponds to a specific state in variables

and is associated with a probability distribution for effectiveness.

Table 1. Variables included in the model.

Variable Description

NIDS Whether a network based intrusion detection

system is used or not.

HIDS Whether a host based intrusion detection system is

used or not.

Tuned Whether the intrusion detection systems used have

been tuned for their environment or not.

Updated Whether the signatures used by the intrusion

detection systems are fully updated or not.

Patchable Whether the exploit they are supposed to detect

use a vulnerability that can be patched or not.

3 Method used to

synthesize expert
judgments

This paper uses the judgment of domain experts to produce

quantitative estimates of IDSs' effectiveness in different

scenarios. There is a substantial amount of research on how to

combine, or synthesize, the judgment of multiple experts to

increase the calibration of the estimates used. These techniques

include the following: consensus methods [32], [33], the

Cochran-Weiss-Shanteau index [34], self-proclaimed expertise

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

151

[35], experience [36], certifications [36], peer-recommendations

[36], and Cooke’s classical method [37]. There is little research

that compares the accuracy that these methods yield. However,

research has shown that groups of individuals assess an

uncertain quantity better than the average expert, while the best

individuals in the group are often better calibrated than the

group as a whole [38].

The scheme used to combine judgments in this research is the

one used in the classical model of Cooke [37]. Cooke’s model is

a generic method for combining expert judgments that has been

applied to a number of different domains. Experience from

applications of Cooke’s classical method has shown that it

outperforms both the best expert and the “equal weight”

combination of estimates. In an evaluation involving 45 studies,

it performed significantly better than both alternatives in 27

studies and equally well as the best expert in 15 of the studies

[19].

In Cooke’s classical method two scores, one for calibration and

one for information, are calculated for the respondents for the

purpose of weighting them. The scores are based on the

respondents’ answers to a set of seed questions, i.e., questions

for which the true answer is known at the time of analysis. The

calibration score shows how correctly a respondent’s answers

reflect the true value and the information score shows how

precise a respondent’s answer is. These two scores are used to

assign weights to the respondents based on their performance,

via a function called a virtual decision maker. The weights defined

by this decision maker are then used to weight the respondents’

answers to the questions of interest – in this case the operational

scenarios described in section 5.1.

In summary, the method thus filters out individuals as “true

experts” from a pool of potential experts, given their accuracy

and preciseness in the answers of a set of test questions. For the

questions of interest then, only those filtered out as “true

experts” are used. Thus, this means that the vast amount of

initial respondents’ answers is simply disregarded. This means

that, in contrast to many other expert based studies, the

fundamental philosophy of this method is that it does not really

matter how many respondents that participates in the study as

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

152

long as at least one can be considered a “true expert” (according

to the method), whose answers could be trusted as “true values”.

In sections 3.1, 3.2 and 3.3 Cooke’s classical method is

explained. For a more detailed explanation the reader is referred

to [37].

3.1 Calibration score
In the elicitation phase the experts provide individual answers to

the seed questions. The seed questions request the respondents

to specify a probability distribution for an uncertain continuous

variable. This distribution is typically specified by stating its 5th,

50th, and 95th percentile values. This yields four intervals over the

percentiles [0-5, 5-50, 50-95, 95-100] with probabilities of p=

[0.05, 0.45, 0.45, 0.05]. As the seeds are realizations of these

variables, the well calibrated expert will have approximately 5%

of the realizations in the first interval, 45 % of the realizations in

the second interval, 45 % of the realizations in the third interval

and 5% of the realizations in the fourth interval. If s is the

distribution of the seed over the intervals, the relative

information of s with respect to p is: () ∑ ()

 .

This value indicates how surprised someone would be if one

believed that the distribution was p and then learnt that it was s.

If N is the number of samples/seeds the statistic of 2NI(s, p) is

asymptotically Chi-square distributed with three degrees of

freedom. This asymptotic behaviour is used to calculate the

calibration Cal of expert e as: ()
 (()).

Calibration measures the statistical likelihood of a hypothesis.

The hypothesis tested is that realizations of the seeds (s) are

sampled independently from distributions agreeing with the

expert's assessments (p).

3.2 Information score
The second score used to weight experts is the information

score, i.e., how precise and informative the expert’s distributions

are. This score is calculated as the deviation of the expert's

distribution to some meaningful background measure. In this

study the background measure is a uniform distribution over

[0,1].

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

153

If bi is the background density for seed i∈{1,…,N} and de,i is the

density of expert e on seed i the information score for expert e is

calculated as: ()

∑ ()

 , i.e., as the relative

information of the experts distribution with respect to the

background measure. It should be noted that the information

score does not reflect calibration and does not depend on the

realization of the seed questions. So, regardless of what the

correct answer is to a seed question, a respondent will receive a

low information score for an answer which is similar to the

background measure, i.e., the answer is distributed evenly over

the variable’s range. Conversely, an answer which is more certain

and assigns most of the probability density to a few values will

yield a high information score.

3.3 Constructing a decision maker
Cooke’s classical method rewards experts who produce answers

with high calibration (high statistical likelihood) and high

information value (low entropy). A strictly proper scoring rule is

used to calculate the weights the decision maker should use. If

the calibration score of the expert e is at least as high as a

threshold value (α) the expert’s weight is obtained by ()

 () (). If the experts calibration is less than the

threshold value (α) the expert’s weight is set to zero, a situation

which commonly happens to a substantial portion of experts in

practical applications.

The threshold value α corresponds to the significance level for

rejection of the hypothesis that the expert is well calibrated. The

value of α is identified by resolving the value that would

optimize a virtual decision maker. This virtual decision maker

combines the experts’ answers (probability distributions) based

on the weights obtained at the chosen threshold value (α). The

optimal level for α is where this virtual expert would receive the

highest possible weight if it was added to the expert pool and

had its calibration and information scored as the actual experts.

When α has been resolved, the normalized value of the experts’

weights w(e) are used to combine their estimates of the uncertain

quantities of interest.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

154

4 Data collection method
This section presents how the data was collected by explaining:

which population and sample of experts that was chosen, how

the measurement instrument was developed and tested, how

seed questions for Cooke’s classical method were assessed, and

the result of applying Cooke’s classical method.

4.1 The domain experts
As this research aims to identify quantities related to IDSs the

respondents needed both the ability to evaluate aspects in the

domain and the ability to reason in terms of probabilities. In

terms of the expert categories described in [34] individuals that

are expert judges are desirable. Studies of experts’ calibration

have concluded that experts are well calibrated in situations with

learnability and with ecological validity [39]. Learnability comes

with models over the domain, the possibility to express

judgment in a coherent quantifiable manner and the opportunity

to learn to from historic predictions and outcomes. Ecological

validity is present if the expert is used to making judgments of

the type they are asked in the survey.

Respondents that have had the opportunity to learn the

effectiveness of IDSs are likely to be those that have performed

tests on different solutions in a quantifiable manner. Researchers

in the intrusion detection field have performed and disseminated

a number of empirical studies related to effectiveness of

different solutions. While these studies are questionable with

respect to generality [12] they do offer input to specific

scenarios. Practitioners (e.g. system administrators) will probably

not have the same opportunity to learn the effect of different

scenarios since they typically only have experience from a few

installations and rarely perform stringent evaluations of

effectiveness. Also, with respect to ecological validity it is

expected that researchers are more used to estimating probability

distribution and reason in terms of probabilities.

For these reasons IDSs researchers were chosen as the

respondents to the survey. To identify suitable respondents,

articles published in the SCOPUS database [40] between January

2005 and September 2010 were reviewed. Authors who had

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

155

written articles in the information technology field with

“intrusion detection” in the title, abstract or keywords were

identified. If their contact information could be found they were

added to the list of potential respondents, resulting in a sample

of 13561 respondents. After reviewing respondents with respect

to their research topic, and the availability of their contact

information, a sample of 6269 individuals was identified. Of

these, the contact information to at approximately 1550 turned

out to be incorrect or out-dated. A pilot study involving 500

respondents (described in section 4.2) reduced the number of

respondents who received the final survey to approximately 4200

individuals.

Out of approximately 4200 researchers invited to the survey

1355 opened it and 243 submitted answers to the survey’s

questions. A response rate of this magnitude is to be expected of

a slightly more advanced survey. As recommended by [41],

motivators were presented to the respondents invited to the

survey: (i) helping the research community as whole, (ii) the

possibility to win a gift certificate on literature, and (iii) being

able to compare their answers to other experts after the survey

was completed. A number of respondents provided input on less

than half of the questions, i.e., they answered with the pre-set

background measure on more than half of the questions. These

were excluded from further analysis, resulting in 165 usable

surveys completed by IDS researchers.

4.2 Elicitation instrument
A web survey was used to collect the probability distributions

from the invited respondents. The survey comprised four parts,

each beginning with a short introduction to the section. First, the

respondents were given an introduction to the survey that

explained the purpose of the survey and its outline. In this

introduction they also confirmed that they were the person who

had been invited and provided information about themselves,

e.g. years of experience in the field of research. Second, the

respondents received training regarding the answering format

used in the survey. After confirming that this format was

understood the respondents proceeded to its third part. In the

third part both the seed questions and the questions of the study

were presented to the respondents. Finally, the respondents were

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

156

asked to provide qualitative feedback on the survey and the

variables covered by it.

The questions in section three of the survey were each described

through a scenario entailing a number of conditions. Scenarios

and conditions for the seed questions can be found in Table 2;

scenarios and conditions for the questions at issue in this study

can be found described in Table 3. For each scenario the

respondent was asked to provide a probability distribution that

expressed the respondent’s belief. As is custom in applications of

Cooke’s classical method this probability distribution was

specified by setting the 5th percentile, the 50th percentile (the

median), and the 95th percentile for the probability distribution.

In the survey the respondents specified their distribution by

adjusting sliders or entering values to draw a dynamically

updated graph over their probability distribution. The three

points specified by the respondents defines four intervals over

the range [0, 100]. The graphs displayed the probability density

as a histogram, instantly updated upon change of the input

values. Use of graphical formats is known to improve the

accuracy of elicitation [42]. Figures and colours were also used to

complement the textual questions and make the questions easier

to understand. In Figure 2 the format presented to the

respondents is exemplified. A generic figure describing the

survey’s variables could also be found at the top of each section,

along with introductory text.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

157

Figure 2. Example of question and answering format in the
survey.

Elicitation of probability distributions is associated with a

number of issues [42]. Effort was therefore spent on ensuring

that the measurement instrument held sufficient quality. The

survey was, after careful construction, qualitatively reviewed

during personal sessions with two external respondents

representative of the population. These sessions contained two

parts. First the respondents were given task to fill in the survey,

given the same amount of information as someone doing it

remotely. After this discussions followed regarding the

instrument quality. These sessions resulted in several

improvements with respect to language and phrasing of

questions.

The main part of the instrument review however took place in

the next phase: a pilot study using a randomized sample of 500

respondents from the previously mentioned 6269 screened

subjects. This pilot survey was opened by 123 persons and

completed by 34 during the week it was open. Cronbach’s alpha

[43], [44] is often used to test the reliability of a survey

instrument and if respondents understand its questions. A

reliability test using Cronbach’s alpha was carried out using one

variable (four different versions of the fourth seed question).

Measuring the reliability of more than one question would be

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

158

inefficient, as all sections and questions were formatted in the

same way, and most likely have created bias for the instrument

used during the pilot study. Results from this test showed a

reliability value of 0.817, which indicates good internal

consistency of the instrument. Qualitative comments also

confirmed that respondents understood the questions. A few

possible improvements were however identified. After these

changes had been implemented the survey was again qualitatively

reviewed by the two persons mentioned previously.

4.3 Seed questions
In this study Cooke’s classical method is used to synthesize

experts’ judgements. This method assigns weight to the experts

based on their calibration and information score to the seed

questions. As an expert’s performance on answering the seed

questions is used to weight them, it is critical that the seeds are

highly validated and that they lie in the same domain as the

studied variables. Thus, the seeds should represent the truth and

it should be difficult to tell them apart from the questions in the

study. However, they do not necessarily need to be directly

related to questions of the study [45].

Naturally, the robustness of the weights attributed to individual

experts depends on the number of seeds used. Experience shows

that around eight seed questions are enough to see substantial

difference in calibration [45].

For this study two types of seed questions were used (cf. Table

2). The first type (questions 1-3) concerned the detection rate of

different IDS products when faced with a seven types of

commands produced with Nmap [46], a network discovery tool.

The actual detection rates (the realization values) were drawn

from an empirical test described in [8]. The second type of seed

questions (4-8) concerned the coverage of software

vulnerabilities in the IDS ruleset maintained by the Sourcefire

Vulnerability Research Team [47]. This ruleset is used in the

popular signature based IDS product Snort [48], amongst others.

Statistics on how well this ruleset covered vulnerabilities in

different products and timeframes was obtained by cross

referencing this ruleset’s coverage to the National Vulnerability

Database [49]. The Common Vulnerability Scoring System

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

159

(CVSS) [50] is a well-established system for rating a software

vulnerability’s severity. Vulnerabilities rated with high severity

according in the Common Vulnerability Scoring System (CVSS)

[50] were used as such vulnerabilities are those that could be

used for arbitrary code exploits.

Table 2. Seed questions used in abbreviated format. The
seven NMAP commands can be found in [8].

Question Realization

(%)

1 If one of the seven NMAP commands was randomly

selected and then executed, how probable do you think it is

that a default configured Snort intrusion detection system

would detect it?

72

2 If one of the seven NMAP commands was randomly

selected and then executed, how probable do you think it is

that a default configured Tamandua intrusion detection

system would detect it?

29

3 If one of the seven NMAP commands was randomly

selected and then executed, how probable do you think it is

that a default configured Firestorm intrusion detection

system would detect it?

29

4 Consider vulnerabilities of high severity (according to CVSS)

that impacts Windows 7 and was published during 2010.

What portion of these vulnerabilities has a corresponding

signature in Snort’s default ruleset?

40

5 Consider vulnerabilities of high severity (according to CVSS)

that impacts MySQL and was published during 2004-2009.

What portion of these vulnerabilities has a corresponding

signature in Snort’s default ruleset?

87

6 Consider vulnerabilities of high severity (according to CVSS)

that impacts Windows 7 and was published during 2009.

What portion of these vulnerabilities has a corresponding

signature in Snort’s default ruleset?

37

7 Consider vulnerabilities of high severity (according to CVSS)

that impacts Windows 7 and was published during the last 6

months. What portion of these vulnerabilities has a

corresponding signature in Snort’s default ruleset?

35

8 Consider vulnerabilities of high severity (according to CVSS)

that impacts Samba and was published during 2010. What

portion of these vulnerabilities has a corresponding

signature in Snort’s default ruleset?

33

A threat to the validity of the results is that these sources are also

available to the respondents who could have used them identify

the answers to the seed questions. However, it appears unlikely

that any of the respondents had done so. None of the

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

160

respondents answering the survey have given comments that

indicate that they have realized that the correct answer can be

found this way. The qualitative reviewers did not realize this

during the dry runs either. Furthermore, inspections of the

answers received do not indicate any answers based on these

sources. Naturally, the authors of the article used [8] were

excluded from the list of potential respondents.

4.4 Respondents’ performance
For each respondent the weight was calculated from their

answers to the seed questions. All 165 respondents completed

the survey in less than one hour. As in many other studies

involving expert judgment many of the experts were poorly

calibrated. Their calibration score varied between 2.200*10-10 and

0.6638 with a mean of 0.1575; their information score varied

between 8.620*10-7 and 3.293 with a mean of 0.8630. Figure 3

shows the information score and calibration score of the

respondents (c.f. section 3 for an explanation of these values).

Cooke’s classical method aims is to identify those respondents

whose judgment is well calibrated and informative. The virtual

decision maker was optimized at a significance level (α) of

0.6638. Consequently, the twelve rightmost respondents in

Figure 3 received a weight higher than zero and the other 153

respondents received a weight of zero. As noted above it is not

uncommon that a substantial number of respondents receive the

weight zero with this method.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

161

Figure 3. Information and calibration scores of the
respondents

The twelve respondents who received a positive weight all had

the same calibration score (0.6638). Their weights are therefore

directly proportional with their information score (cf. section

3.3). They received weights between 0.0313 and 0.1401 after

normalization.

5 Results
This section presents the result of the analysis performed on the

judgment of the 165 researchers. In section 5.1 the synthesized

estimates of those respondents who were assigned weight are

presented. In section 5.2 the influence that each of the five

individual variable have on the effectiveness is described.

5.1 Detection rate in the scenarios
To identify the probability distribution which the virtual decision

maker assigns to the effectiveness in the 24 scenarios the

individual estimates were combined using their weights. The

estimated distributions were assumed to be distributed in the

same way as they were presented to the respondents (c.f. section

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

In
fo

rm
at

io
n

 s
co

re

Calibration score

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

162

4.2), i.e., as depicted in the histograms over the four ranges they

constructed with their answers.

As depicted in Table 3 the synthesized estimates show clear

differences among the scenarios. The median for the scenarios

varies between 32% and 65%; the value at the 5th percentile

varies between 2% and 13%; the value at the 95th percentile

varies between 80% and 97%. Scenario one (where all variables

are true) has the highest median (65%) and mean (58%)

effectiveness. Scenario 17, which is the same as scenario 1 but

without the network IDS, is the second most effective judging

from the median (63%) and mean (55%). Scenario 4, 6, 8, 12, 14,

16 and 24 are on the other end of the scale with medians or

means of 40 % or below.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

163

Table 3. The scenarios, their variable configuration and
their estimated effectiveness.

S
c
e
n

a
ri

o

N
ID

S

H
ID

S

P
a
tc

h
a
b

le

U
p

d
a
te

d

T
u

n
e
d

L
o

w
 (

5
%

)

M
e
d

ia
n

 5
0
%

)

H
ig

h
 (

9
5
%

)

E
x

p
e
c
te

d

1 Y Y Y Y Y 13 65 91 58

2 Y Y Y Y N 8 43 93 48

3 Y Y Y N Y 12 59 96 54

4 Y Y Y N N 5 39 82 41

5 Y N Y Y Y 6 48 91 47

6 Y N Y Y N 6 38 91 41

7 Y N Y N Y 8 44 88 44

8 Y N Y N N 4 32 92 39

9 Y Y N Y Y 9 51 91 48

10 Y Y N Y N 8 45 89 43

11 Y Y N N Y 10 49 90 46

12 Y Y N N N 2 39 80 38

13 Y N N Y Y 2 40 90 41

14 Y N N Y N 7 37 85 38

15 Y N N N Y 10 42 88 42

16 Y N N N N 2 39 93 43

17 N Y Y Y Y 8 63 94 55

18 N Y Y Y N 7 51 91 50

19 N Y Y N Y 9 53 92 50

20 N Y Y N N 4 48 97 47

21 N Y N Y Y 8 50 89 45

22 N Y N Y N 7 48 87 44

23 N Y N N Y 9 51 92 48

24 N Y N N N 2 40 84 40

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

164

5.2 Variables’ influence on the

effectiveness of intrusion

detection
This study varies five variables in the scenarios. Both literature

and domain experts have identified these variables as relevant to

the effectiveness of an intrusion detection solution. The

variation over scenarios on effectiveness supports this

hypothesis. A relevant question is then how important these

variables are for the IDS’s effectiveness and if certain variable

combinations have a particular effect, i.e., if the variables are

independent or interact. Table 4 shows the mean influence that

the five variables have on the probability distribution. It also

shows the variable interactions with highest influence on the

effectiveness.

The values in Table 4 show the weight of this variable or variable

combination calculated as in a full factorial experiment [51].

These calculations are made under the assumption that scenarios

without HIDS and NIDS will have zero effectiveness. The

values thus represent the mean influence a variable or variable

combination has on the effectiveness. For instance, the values

for NIDS are obtained as:

∑

 ,

where scenario 25-32 have values zero (there is no detection

system in place).

As can be seen from Table 4 the variables with highest influence

are the NIDS and HIDS, i.e., to actually have an IDS. A NIDS

do on average increase the expected effectiveness with 20.75

percentiles while a HIDS increase the expected effectiveness by

26.25 percentiles. The relatively high influence of these variables

should be seen in the light that without them the effectiveness is

zero. Given that a NIDS and/or HIDS is in place the most

rewarding change is to tune the intrusion detection solution to

its environment (4.125 % units). If the vulnerability that is

exploited is patchable the expected effectiveness by 3.625 %

units and if the IDS has the latest signatures influence by 1.625

% units.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

165

Table 4. The influence strength of individual variables and
selected variable combinations.

 Low

(5%)

Median

(50%)

High

(95%)

Expected

value

NIDS 3.6 19.1 44.0 20.8

HIDS 4.8 29.6 45.0 26.3

Tuned 2.7 7.3 1.8 4.1

Updated 0.8 2.8 0.5 1.7

Patchable 0.9 3.3 2.5 3.6

NIDS & HIDS -2.0 -20.9 -45.8 -21.1

NIDS & Tuned 0.9 3.5 0.8 2.0

HIDS & Updated 1.1 2.0 1.0 1.8

HIDS & Patchable 0.5 2.8 1.8 2.8

Patchable & Updated 0.0 1.4 0.0 1.4

As can be seen from Table 4 the combination of a NIDS and

HIDS has a substantial negative impact on the effectiveness. The

negative value from this interaction is comparative to the

individual influence they have. The interaction even exceeds the

positive influence a NIDS have on the expected effectiveness.

That is, having both a NIDS and a HIDS is on average less

effective than having a HIDS only. Looking at the scenarios in

Table 3, the negative numbers can be explained by the

comparison of scenarios where no tuning has been made to the

solution, i.e., if an un-tuned NIDS is removed and only an un-

tuned HIDS is used the effectiveness increases. The negative

value resulting from this interaction also exceeds the positive

value a HIDS have on the 95th percentiles. The explanation for

this negative influence can also be found in conjunction to un-

tuned solutions. When the solution is neither updated nor tuned

(as in scenario 4 and 12) the 95th percentile’s value increases if

the host based component is removed, given that a NIDS is in

place.

Other variables also interact, but to a lesser extent in absolute

numbers. Table 4 shows those interactions with influences

greater than 1.25 % units (positive or negative) on the expected

effectiveness. As can be seen, tuning appears to be of particular

importance in the case where a NIDS is used. The expected

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

166

value on effectiveness then increases by two percentiles in

addition the 4.125 percentiles that tuning otherwise add, i.e.,

tuning is about 50 % more valuable if a NIDS is used. For

HIDS, signatures that are updated increase the expected

effectiveness by an extra 1.75 percentiles and HIDS also appears

to be more helped by a scenario where the exploited

vulnerability is possible to patch (i.e., is well known). The

interaction is 2.75 percentiles between updates and vulnerability-

type. The positive interaction between updating a system and

being attacked with known (patchable) exploits is intuitive as

updates can be expected to have a limited impact on the

effectiveness against new attacks (which there seldom is a patch

for).

6 Discussion
This outline of the discussion is as follows: Section 6.1 discusses

the validity and reliability of the survey the experts’ judgments

and the survey as a knowledge elicitation instrument. Section 6.2

gives recommendations based on the research findings to

practitioners and section 6.3 gives recommendations for future

research.

6.1 Validity and reliability
Cooke’s classical method [45] was used to synthesize expert

judgments in this study. This performance based method aims to

select the experts that are well calibrated and combine their

judgments in an optimal way. The track record of this method

(Cooke, 2008) positions it as a best-practice when it comes to

eliciting expert judgment of uncertain quantities.

The answers on the seed questions show that many experts in

the intrusion detection field are poorly calibrated (as in many

other domains), i.e., their estimates do not match empirical

observations well. This can be seen through the calibration

scores to the seed questions used in this study (c.f. Table 2) and

show to the importance of assigning different weights to experts’

judgment. Twelve respondents were assigned weight when the

virtual decision maker was optimized. As can be seen from Table

3 are the estimates from the twelve respondents who obtained

weight provided relatively uninformative when compared to the

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

167

respondents’ estimates overall. This is should not be seen as

surprising. Overconfidence is a well-known cause for poor

calibration in expert judgments [52].

When using this method it is appropriate to perform robustness

test with respect to the seed variables and the experts by

removing one expert and investigating the impact of this

removal [45]. Such tests were performed and indicate that the

solution is robust to changes in both seed questions and experts.

Cooke [45] provides a list of guidelines for how to elicit data

from experts: 1) questions must be clear and unambiguous, 2) a

dry run should be carried out before the actual study, 3) an

attractive graphical format should be used and there should be a

brief explanation of the elicitation format, 4) elicitation should

not exceed one hour , 5) coaching should be avoided and 6) an

analyst should be present when respondents answer the

questions. As described in section 4 all guidelines but 6) are met

in this study, i.e., no analyst were present when respondents

answered the questions. With a web survey this was obviously

not fulfilled. The respondents were given contact information to

the research group when invited to the survey that they were

encouraged to use any if questions arose. While this ensures that

no coaching occurred during the elicitation it is possible that it

suppressed potential questions being asked. To identify potential

issues of this type the respondents were asked to comment the

clarity of the questions and the question format used. Based on

the comment received no distressing issues relating to the

questions formulations arose. Several respondents did however

comment the difficulty of expressing knowledge quantitatively or

the difficulty to estimate the effectiveness of IDSs in general (as

there little empirical data on it). However, this issue is not

surprising and is a part of the reason why this study was carried

out in the first place.

The cost of obtaining observational data on the effectiveness of

operational IDSs (were administrators use the system) was the

main motivation for the use of IDS experts judgment to cover

the broad scope of this study. The only observational data on

this found in the literature is the one described in [15]. Although

extensive efforts were made to arrange the experiment described

in [15] (e.g., construction of fictive networks, installation and

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

168

tuning of an IDS, time spent by attackers and administrators) it

is associated with several assumptions and delimitations which

threatens the representativeness of the result. It roughly

corresponds to scenario 1 which the experts in this study

assessed, i.e., the most ideal scenario. The experiment gave an

effectiveness of 58% and the mean value of the domain experts

is 59% (cf. Table 3). Thus, the experiment executed by [15] after

this expert survey corroborates the experts’ assessment.

6.2 Recommendations to
information system decision-

makers
From a practitioners’ point of view these results provide input

on which actions to take in order to achieve effective

surveillance by an IDS. The results show that experts are

uncertain about IDS effectiveness, and that many experts are

poorly calibrated (incorrect and uncertain) on the test questions

used to weight them. In other words, if a decision maker would

ask a randomly selected IDS expert for advice (s)he is likely to

get vague or incorrect suggestions; if multiple experts are asked

for advice their recommendations will probably differ. This

study has synthesized the judgment of a large number of security

experts (out of whom the most calibrated have carefully been

selected). The synthesized results are uncertain, but it is unlikely

that the decision maker can get more precise knowledge (at this

level of abstraction) from a random security expert or a random

set of security experts. Also, knowing the uncertainty of the

effectiveness in an IDS scenario will help the decision maker to

make informed decisions and appreciate the effectiveness of

countermeasures not covered by this study.

To tune the IDS to its environment is expected to increase the

detection rate. However, tuning an IDS in an enterprise context

is a continuous process: as soon as there has been a change in

any parameter that is under surveillance the IDS needs to be

tuned to reflect this change. For example, if the organization has

installed a new FTP server or bought new computer systems the

traffic patterns will change and the IDS will need to be tuned

again. Since tuning requires constant adaptation of the IDS it will

require that such system administrators regularly spend time

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

169

analysing recent changes to the enterprise system architecture

and adapt the IDS accordingly [5], [26]. Of course, these costs

can be neglected if the IDS is deployed is static and documented

environment, e.g., in an industrial facility’s control system

network.

If the IDS use the most recent ruleset its effectiveness will also

increase. In comparison to tuning, keeping the IDS updated with

a recent ruleset is a straightforward process which does not

require administrators to analyse the current architecture or

spend significant efforts on programming the IDS solution. On

the other hand, subscriptions to new rules are often associated

with some cost.

Host based solutions (HIDS) give a better effectiveness than

network based solution (NIDS). However, a delimitation of

HIDS’s is that they are required to be implemented on a host-

level, which could involve significant costs. For example, each

HIDS might have to be manually installed on each supervised

system, and perhaps manually tuned for the context of each such

system. A NIDS-solution is not as effective as a HIDS-solution.

As such, a cost effective architecture is likely to use a HIDS

solution on the most sensitive systems in the enterprise and a

NIDS solution to monitor less sensitive systems. For instance, a

HIDS solution could be used to monitor critical business servers

and a NIDS solution could be used to monitor office clients.

Combined solutions (with both HIDS and NIDS) are presented

in literature and have the potential to increase the effectiveness.

However, the result from this study suggests the opposite – a

combination of a HIDS and NIDS is not believed to increase

the effectiveness of intrusion detection. In fact, if a HIDS is

already used, the experts believe that the effectiveness will

decrease if an NIDS also is installed. One reason behind this

could be that the output and the HIDS will overlap and that

large amounts of information (and false alarms) that need to be

parsed by the administrator in order to detect attacks with

multiple sensors.

An interesting result of this study is that the possibility to patch

the exploited vulnerability has the lowest impact of the assessed

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

170

variables. This suggests that a signature based systems can detect

novel attack-types, just as anomaly based systems.

Finally, organizational decision makers should reflect on whether

IDSs really are needed in their environments. This study show

that such tools are believed to only provide modest

effectiveness, and to implement and maintain an IDS solution

can be costly. The tools do not only require technical costs

(installation/maintenance), but also the time of network

administrators who need to carefully study the output of the

solution to be able to detect real attacks.

6.3 Recommendations to

researchers
Observational studies and experiments like the one described in

[15] are costly to perform and should therefore be carefully

planned. This study identifies a number of variables and variable-

interactions that are believed to be important by a carefully

selected group of domain experts. In relation to future research,

a general conclusion is obviously that since the results come with

quite a fair amount of uncertainty, certainty in the area of IDS

effectiveness is lacking. The uncertainty expressed by the domain

experts suggests that there are several nuisance variables that are

not included in the (rather simple) model used in this study. This

should be considered in future research.

The respondents of the survey were asked to suggest variables

that were perceived as important for effectiveness by indicating

which of the studied variables they would like to replace it with.

Suggestions made were to add anomaly-based intrusion

detection and to further detail the variable relating to the

exploited vulnerability type. It is also likely that less uncertainty

concerning the value of nuisance variables would reduce the

uncertainty in domain experts’ estimates. Thus, further studies

involving domain experts could be employed to produce more

precise hypotheses concerning effectiveness.

Another interesting finding is that the variables are rather

independent (except the usage of HIDS and NIDS in

combination). This seems to suggest that future research can

reasonably be optimized in each variable domain independently.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

171

For example in experiments concerning effectiveness or in

repeated studies using a similar format to the one presented here.

As mentioned above – the survey also found relations that are

contradicting well accepted causalities within the security

community: that signature based detection can detect novel

attacks and that a combination of HIDS and NIDS often is

ineffective. These results are thus particularly interesting to

investigate further. To some extent they also point in the same

direction as the variable substitutions suggested by the

respondents (anomaly based detection and vulnerability type).

7 Conclusion
Reliable data on intrusion detection effectiveness from

observations or experiments expert is not available. The

synthesized judgment of researchers in the intrusion detection

field shows a great deal of uncertainty when estimating the

effectiveness of IDSs for different scenarios. Some of this

uncertainty stems from natural variation between enterprises.

But it appears reasonable that a portion also come from

epistemic uncertainty and strongly related to the lack of

empirical studies in the field, i.e., the community is not certain

on how well intrusion detection actually works.

This study provides indicators on the effectiveness of intrusion

detection in different scenarios. In particular, host based

solutions are associated with higher effectiveness than network

based ones, tuning is a measure with comparably high impact on

the effectiveness, and it is not of great importance to the

effectiveness if the vulnerability exploited is well-known and

patchable or if it is not. These quantitative results are based on

the synthesized judgment of researchers in the field and indicate

the importance of different variables and the effectiveness of

solutions as a whole. If reliable data can be obtained from

experiments or from observations of installed systems’

effectiveness would allow tests of this result’s validity.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

172

9 References
[1] M. Sumner, “Information Security Threats: A Comparative

Analysis of Impact, Probability, and Preparedness,” Information
Systems Management, vol. 26, no. 1, pp. 2-12, Jan. 2009.

[2] S. Axelsson, “The base-rate fallacy and the difficulty of
intrusion detection,” ACM Transactions on Information and System
Security, vol. 3, no. 3, pp. 186-205, Aug. 2000.

[3] J. P. Anderson, “Computer security threat monitoring and
surveillance,” 1980.

[4] D. E. Denning, “An Intrusion-Detection Model,” IEEE
Transactions on Software Engineering, vol. SE–13, no. 2, pp. 222-
232, Feb. 1987.

[5] K. Scarfone and P. Mell, “Guide to intrusion detection and
prevention systems,” Gaithersburg, MD, USA, 2007.

[6] K. Salah and a. Kahtani, “Improving Snort performance under
Linux,” IET Communications, vol. 3, no. 12, p. 1883, 2009.

[7] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A. J. Cullen,
and P. Mirchandani, “Evaluating Intrusion Detection Systems
in High Speed Networks,” 2009 Fifth International Conference on
Information Assurance and Security, pp. 454-459, 2009.

[8] F. B. Ktata, N. E. Kadhi, and K. Ghédira, “Agent IDS based
on Misuse Approach,” Journal of Software, vol. 4, no. 6, pp. 495-
507, Aug. 2009.

[9] C. Xenakis, C. Panos, and I. Stavrakakis, “A comparative
evaluation of intrusion detection architectures for mobile ad
hoc networks,” Computers & Security, vol. 30, no. 1, pp. 63-80,
Nov. 2010.

[10] R. Lippmann et al., “Evaluating intrusion detection systems:
the 1998 DARPA off-line intrusion detection evaluation,”
Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00, pp. 12-26, 1998.

[11] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das,
“The 1999 DARPA on-line intrusion detection evaluation,”
Computer Networks, vol. 34, 2000.

[12] J. McHugh, “Testing Intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory,” ACM
Transactions on Information and System Security, vol. 3, no. 4, pp.
262-294, Nov. 2000.

[13] B. I. A. Barry and H. A. Chan, “Intrusion detection systems,”
in Handbook of Information and Communication Security, vol. 2001,
no. 6, P. Stavroulakis and M. Stamp, Eds. Springer, 2010, pp.
193-205.

[14] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An
overview of issues in testing intrusion detection systems,
(NIST IR 7007),” Citeseer, 2003.

[15] T. Sommestad and A. Hunstad, “Intrusion detection and the
role of the system administrator,” in Proceedings of International

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

173

Symposium on Human Aspects of Information Security & Assurance,
2012.

[16] R. Cooke and L. Goossens, “Expert judgement elicitation for
risk assessments of critical infrastructures,” Journal of Risk
Research, vol. 7, no. 643–656, 2004.

[17] M. P. Krayer von Krauss, E. a Casman, and M. J. Small,
“Elicitation of expert judgments of uncertainty in the risk

assessment of herbicide-tolerant oilseed crops.,” Risk analysis :
an official publication of the Society for Risk Analysis, vol. 24, no. 6,
pp. 1515-27, Dec. 2004.

[18] E. McFadzean, J.-N. Ezingeard, and D. Birchall, “Information
Assurance and Corporate Strategy: A Delphi Study of Choices,
Challenges, and Developments for the Future,” Information
Systems Management, vol. 28, no. 2, pp. 102-129, Apr. 2011.

[19] R. M. Cooke, “TU Delft expert judgment data base,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 657-674, May
2008.

[20] E. Biermann, “A comparison of Intrusion Detection systems,”
Computers & Security, vol. 20, no. 8, pp. 676-683, Dec. 2001.

[21] S. Axelsson, “Intrusion detection systems: A survey and
taxonomy,” Göteborg, Sweden, 2000.

[22] P. Garciateodoro, J. Diazverdejo, G. Maciafernandez, and E.
Vazquez, “Anomaly-based network intrusion detection:
Techniques, systems and challenges,” Computers & Security, vol.
28, no. 1–2, pp. 18-28, Feb. 2009.

[23] M. A. Faysel and S. S. Haque, “Towards Cyber Defense :
Research in Intrusion Detection and Intrusion Prevention
Systems,” Journal of Computer Science, vol. 10, no. 7, pp. 316-325,
2010.

[24] A. Ashfaq, M. Robert, A. Mumtaz, M. Ali, A. Sajjad, and S.
Khayam, “A comparative evaluation of anomaly detectors
under portscan attacks,” in Recent Advances in Intrusion Detection,
2008, pp. 351–371.

[25] S. Shaikh, H. Chivers, P. Nobles, J. Clark, and H. Chen,
“Characterising intrusion detection sensors,” Network Security,
vol. 2008, no. 9, pp. 10-12, Sep. 2008.

[26] R. Werlinger, K. Hawkey, and K. Muldner, “The challenges of
using an intrusion detection system: is it worth the effort?,”
SOUPS ’08 Proceedings of the 4th symposium on Usable privacy and
security, no. 1, 2008.

[27] K. Julisch and M. Dacier, “Mining intrusion detection alarms
for actionable knowledge,” in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2002, pp. 366–375.

[28] R. S. Thompson, E. M. Rantanen, and W. Yurcik, “Network
intrusion detection cognitive task analysis: Textual and visual
tool usage and recommendations,” in Human Factors and
Ergonomics Society Annual Meeting Proceedings, 2006, vol. 50, no. 5,
pp. 669–673.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

174

[29] R. S. Thompson, E. M. Rantanen, W. Yurcik, and B. P. Bailey,
“Command line or pretty lines?: comparing textual and visual
interfaces for intrusion detection,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2007, p. 1205.

[30] T. Itoh, H. Takakura, A. Sawada, and K. Koyamada,
“Visualization of Network Intrusion Detection Data,” IEEE
Computer Graphics and Applications, vol. 26, no. 2, pp. 40-47,
2006.

[31] J. R. Goodall, W. G. Lutters, and A. Komlodi, “Developing
expertise for network intrusion detection,” Information
Technology & People, vol. 22, no. 2, pp. 92–108, 2009.

[32] a Fink, J. Kosecoff, M. Chassin, and R. H. Brook, “Consensus
methods: characteristics and guidelines for use.,” American
journal of public health, vol. 74, no. 9, pp. 979-83, Sep. 1984.

[33] A. H. Ashton, “Does consensus imply accuracy in accounting
studies of decision making?,” The Accounting Review, vol. 60, no.
2, pp. 173–185, 1985.

[34] D. J. Weiss and J. Shanteau, “Empirical Assessment of
Expertise,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 45, no. 1, pp. 104-116, 2003.

[35] M. J. Abdolmohammadi and J. Shanteau, “Personal attributes
of expert auditors,” Organizational Behavior and Human Decision
Processes, vol. 53, no. 2, pp. 158–172, 1992.

[36] J. Shanteau, D. J. Weiss, R. P. Thomas, and J. C. Pounds,
“Performance-based assessment of expertise: How to decide if
someone is an expert or not,” European Journal of Operational
Research, vol. 136, no. 2, pp. 253–263, 2002.

[37] R. Cooke, Experts in Uncertainty: Opinions and Subjective Probability
in Science. New York, New York, USA: Open University Press,
1991.

[38] R. T. Clemen and R. L. Winkler, “Combining probability
distributions from experts in risk analysis,” Risk Analysis, vol.
19, no. 187, pp. 187-204, 1999.

[39] F. Bolger and G. Wright, “Assessing the quality of expert
judgment: Issues and analysis,” Decision Support Systems, vol. 11,
no. 1, pp. 1-24, Jan. 1994.

[40] Elsevier B.V., “Scopus,” 2011. [Online]. Available:
http://www.scopus.com/.

[41] S. T. Cavusgil and L. A. Elvey-Kirk, “Mail survey response
behavior: A conceptualization of motivating factors and an
empirical study,” European Journal of Marketing, vol. 32, no.
11/12, pp. 1165–1192, 1998.

[42] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, “Statistical
methods for eliciting probability distributions,” Journal of the
American Statistical Association, vol. 100, no. 470, pp. 680-701,
2005.

[43] L. J. Cronbach and R. J. Shavelson, “My Current Thoughts on
Coefficient Alpha and Successor Procedures,” Educational and
Psychological Measurement, vol. 64, no. 3, pp. 391-418, Jun. 2004.

Paper D: Quantifying the effectiveness of intrusion detection systems

in operation through domain experts

175

[44] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

[45] R. Cooke, Experts in uncertainty: opinion and subjective probability in
science. 1991.

[46] G. Lyon, “Nmap,” 2011. [Online]. Available:
http://nmap.org/.

[47] I. Sourcefire, “Snort::VRT,” 2011. [Online]. Available:
http://www.snort.org/vrt.

[48] I. Sourcefire, “Snort::Home page,” 2011. [Online]. Available:
http://www.snort.org/.

[49] U. S. D. of C. NIST Computer Security Resource Center,
“National Vulnerability Database,” 2011. [Online]. Available:
http://nvd.nist.gov/.

[50] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to
the common vulnerability scoring system version 2.0,” in
Published by FIRST-Forum of Incident Response and Security Teams,
2007, pp. 1-23.

[51] D. C. Montgomery, Design and analysis of experiments. John Wiley
& Sons Inc, 2008.

[52] S. Lin, “A study of expert overconfidence,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 711-721, May
2008.

Paper E: Estimates of success rates of denial-of-service attacks

176

Paper E:

Estimates of success

rates of denial-of-service

attacks
Teodor Sommestad, Hannes Holm and Mathias Ekstedt

Abstract

Denial-of-service (DoS) attacks are an imminent and real threat

to many enterprises. Decision makers in these enterprises need

be able to assess the risk associated with such attacks and to

make decisions regarding measures to put in place to increase the

security posture of their systems. Experiments, simulations and

analytical research have produced data related to DoS attacks.

However, these results have been produced for different

environments and are difficult to interpret, compare, and

aggregate for the purpose of decision making. This paper aims to

summarize knowledge available in the field by synthesizing the

judgment of 23 domain experts using an establishing method for

expert judgment analysis. Different system architecture’s

vulnerability to DoS attacks are assessed together with the

impact of a number of countermeasures against DoS attacks.

Paper E: Estimates of success rates of denial-of-service attacks

177

1 Introduction
Denial-of-service (DoS) attacks on information technology

based services are a relatively common type of security incident

and produce a substantial share of the losses incurred from

attacks on information technology.

To manage the risk related to DoS attacks in practice, decision

makers need to be able to understand and estimate the

probability that their information technology based services can

be disturbed by this type of attack. Hence, data on the

probability of attack success given different conditions in the

information technology infrastructure would contribute to more

informed decision making when it comes to risks associated with

DoS attacks.

There are literature that summarizes this problem domain and

the potential of different countermeasures, for example, the

review made by Peng et al. [1]. In this review, four categories of

defense against DoS attacks are identified: attack prevention,

attack detection, attack source identification, and attack reaction.

All of these are relevant, however, this study only focus on the

first type of defense – attack prevention.

There is plenty of research on techniques for attack prevention

in terms of simulations, experiments, and analytical calculations.

However, this research is difficult to use in a decision making

situation. The simulations, experiments, and calculations are

made for a specific configuration and aims to be representative

for a specific context [2]. Therefore, unless the decision maker

has this specific situation at hand, these results must first be

interpreted and somehow synthesized before they can be used to

answer questions related to the decision making situation at

hand.

This paper aims to summarize knowledge that exists in the

research community on how difficult it is to succeed with DoS

attacks in general, and how effective different preventive

countermeasures are against these attacks. This is done through a

survey distributed to experts on DoS attacks. The experts were

Paper E: Estimates of success rates of denial-of-service attacks

178

asked to estimate success probabilities in different scenarios.

Since the scenarios were defined on a high level of abstraction,

the answers from any expert would be inherently uncertain. In

order to take this fact into account the answers were given as

probability distributions of attack success. In order to arrive at as

credible results as possible estimates of the experts were

weighted using an established method for expert judgment

analysis. Thus, in summary, the estimates are made for a number

of selected system scenarios and show both expected

effectiveness of countermeasures and the uncertainty of these

estimates.

The rest of this paper is structured as follows. Section 2 presents

related work and the scenarios for which success probabilities

were assessed. Section 3 presents the method for expert

judgment analysis, known as Cooke’s classical method. Section 4

presents the data collection method. Section 5 shows the result.

Section 6 discusses these results and their implications. Section 7

draws conclusions.

2 Studied Denial-of-

Service attack scenarios
Denial-of-service (DoS) attacks can be divided in two types [3].

The first type, semantic attacks, causes DoS by sending carefully

crafted packets to the targeted system (also known as software

exploits [4]). These packets exploit vulnerabilities in the target

system and make it unresponsive, e.g. by crashing the system.

The second type, brute force attacks, occupies the target service

with massive amounts of traffic that impairs it so that it cannot

serve legitimate users (also known as flooding attacks [4]). This

study covers both these classes of attacks. Previous work in both

types of attack is presented below together with the variables

included in this study. The selected variables have been chosen

based on (1) relevance to practical applications and their usage in

practice today, (2) their expected impact in the possibility to

succeed with the attack and (3) their relevance to decision

makers of software based services. Relevant variables have been

Paper E: Estimates of success rates of denial-of-service attacks

179

selected based on a literature review. This selected variables

relevance and the prioritizations made were validated by two

external security professionals.

2.1 Semantic attacks

Software vulnerabilities are common in software products and

many of these can be used to influence the availability of the

vulnerable system. More than two thirds of known software

vulnerabilities have an impact on availability [5], i.e., they can be

used to cause DoS. There are several aspects that influence if an

attacker can exploit the software vulnerability. The Common

Vulnerability Scoring System [6] includes: the access vector that

is possible to use (i.e. remotely exploitable or only locally

exploitable), if the attacker must be able to bypass authentication

before exploitation, and the ease of exploitation (e.g. if it is easy

to construct the exploit code).

The most obvious countermeasure for this type of attack is to

remove the software vulnerability, e.g., by updating the software

to a version without the vulnerability. However, this is not

always possible to do and is in the typical case associated with an

effort and cost. Also, exploitation might be possible even if the

software is without what would be regarded as software

vulnerabilities per se. For example, by exploiting the intended

functionality in an abusive way as when recursive payloads are

sent to a web service [7].

There are also measures that influence the exposure that is

experienced when software exhibits a software vulnerability.

There are a number preventive measures for semantic attacks,

for instance, in [8] a toolkit for defensive programming is

presented. However, preventive measures these are seldom used

in practice.

This study only investigates remote attacks. Hence, the

investigated attack vector is remote exploitation. The model used

to assess DoS attacks success rate includes three variables for

semantic attacks (cf. Table 1). These are: (1) if the attacker can

provide access credentials to the targeted system (AC, Access

Credentials), (2) the presence of a software vulnerability (SV,

Paper E: Estimates of success rates of denial-of-service attacks

180

Software Vulnerability) in the target, and (3) the target of the DoS

attack. For (3), the goal is to cause DoS for an entire machine or

the target is to cause DoS on a specific service.

Table 1. Variables studied for semantic DoS attacks

Variable Description

AC Access credentials: if the attacker can authenticate

itself as a legitimate user of the service.

SV Software vulnerability: if the software has an

implementation vulnerability.

Machine If the DoS attack targets a machine (e.g. a CPU), or

a specific service running on the machine.

2.2 Flooding attacks
A substantial amount of research has been spent on brute force

attacks, in particular distributed DoS attacks. Excellent

compilations of attack form within this category of attacks can

be found in [3], [9], [1]. The taxonomy in [1] focus on preventive

measures on the network level, e.g., ingress and egress filtering at

internet service providers. While this certainly has an influence

on the possibility to perform certain attacks, it is difficult to

influence as a decision maker of software based services at their

enterprise. In the taxonomy of [3] preventive measures against

flooding attacks include: system security (e.g. to reduce botnets

on the internet), protocol design, resource accounting, and

resource multiplication. The first two of these are again difficult

to influence as an enterprise decision maker and; the third can be

seen as a reactive measure [1]. In addition to the

abovementioned measures, the taxonomy given in [9] includes:

changing IP address, honeypots, disabling unused services, and

secure overlay services.

Based on the criteria given above the following variables were

selected for this study: changing IP address through proactive

server roaming [10], [11] and resource multiplication (i.e.

redundancy) with load balancing [3].

Paper E: Estimates of success rates of denial-of-service attacks

181

Table 2. Variables studied for brute force DoS attacks.

Variable Description

Roaming The service uses proactive server roaming.

Load balancing There is a load balancer in between the

attacker and the target.

2.3 Assumptions
In addition to the variables given above a number of conditions

were kept constant in the scenarios. The attacker is an outsider

with the competence of a professional penetration tester who

has access to tools that are free or commercially available. The

attacker has spent one week preparing for the attack and the

attack is performed from an external network. Also, in the case

of brute force attacks it should be assumed that there is an

enterprise firewall between the attackers host(s) and the targeted

service. However, in all cases the attacker can reach the targets

IP address and port.

Even with these assumptions the scenario definitions only

covers a subset of the variables of relevance. They are also given

on a coarse detail level. For instance, the details associated with

the software vulnerability are not specified and the amount of

redundancy implemented behind the load balancer. To avoid

unnecessary ambiguity the respondents were asked to consider

unspecified variables to be in the state they typically are in an

enterprise environment. For instance, if enterprises often are

protected by ingress and egress filtering this should be accounted

for and considered in the estimates given. Any uncertainty

caused by this should be reflected in the estimates.

3 Synthesizing expert

judgments
There is much research on how to combine, or synthesize, the

judgment of multiple experts to increase the calibration of the

estimate used. Research has shown that group of individuals

Paper E: Estimates of success rates of denial-of-service attacks

182

assess an uncertain quantity better than the average expert, but

the best individuals in the group are often better calibrated than

the group as a whole [12]. The combination scheme used in this

research is the classical model of Cooke [13]. Experience shows

that Cooke’s classical method outperforms both the best expert

and the “equal weight” combination estimates. In an evaluation

involving 45 studies it performs significantly better than both in

27 studies and performs equally as well as the best expert in 15

of them [14].

In Cooke’s classical method calibration and information scores are

calculated for the experts based on their answers on a set of seed

questions, i.e,. questions for which the true answer is known at

the time of analysis. The calibration score shows how correct the

respondent’s answers match the true value; the information

score shows how precise the respondent’s answer are. These two

scores are used to define a decision maker which assigns weights to

the experts based on their performance. The weights defined by

this decision maker are used to weight the respondents answer’s

to the questions of interest – in this case the operational

scenarios described in section 2. In sections 3.1, 3.2 and in 3.3

Cooke’s classical method is explained. For a more detailed

explanation the reader is referred to [13].

3.1 Calibration score
In the elicitation phase the experts provide individual answers to

the seed questions. The seed questions request the respondents

to specify a probability distribution for an uncertain continuous

variable. This distribution is typically specified by stating its 5th,

50th, and 95th percentile values. This yields four intervals over the

percentiles [0-5, 5-50, 50-95, 95-100] with probabilities of p=

[0.05, 0.45, 0.45, 0.05]. As the seeds are realizations of these

variables the well calibrated expert will have approximately 5%

of the realizations in the first interval, 45 % of the realizations in

the second interval, 45 % of the realizations in the third interval

and 5% of the realizations in the fourth interval. If s is the

distribution of the seed over the intervals the relative

information of s with respect to p is: I(s, p)= ∑ ln (si/pi)
4
i=1 .

Paper E: Estimates of success rates of denial-of-service attacks

183

This value indicates how surprised someone would be if one

believed that the distribution was p and then learnt that it was s.

If N is the number of samples/seeds the statistic of 2NI(s, p) is

asymptotically Chi-square distributed with three degrees of

freedom. This is asymptotic behavior is used to calculate the

calibration Cal of expert e as: Cal(e)= 1-
3
2(2N I(s, p))

Calibration measures the statistical likelihood of a hypothesis.

The hypothesis tested is that realizations of the seeds (s) are

sampled independently from distributions agreeing with the

expert's assessments (p).

3.2 Information score
The second score used to weight experts is the information

score, i.e., how precise and informative the expert’s distributions

are. This score is calculated as the deviation of the expert's

distribution to some meaningful background measure. In this

study the background measure is a uniform distribution over the

interval zero to one.

If bi is the background density for seed i∈{1,…,N} and de,i is the

density of expert e on seed i the information score for expert e is

calculated as:

inf(e)=
1

N
∑ I(de,i, bi)

N

i=1

In other words, the information score is the relative information

of the expert’s distribution with respect to the background

measure. It should be noted that the information score does not

reflect calibration and does not depend on the realization of the

seed questions. So, regardless of what the correct answer is to a

seed question a respondent will receive a low information score

for an answer that is similar to the background measure, i.e., the

answer is distributed evenly over the variable’s range.

Conversely, an answer that is more certain and focused the

probability density over few values will yield high information

scores.

Paper E: Estimates of success rates of denial-of-service attacks

184

3.3 Constructing a decision maker
The classical method rewards experts who produce answers with

high calibration (high statistical likelihood) and high information

value (low entropy). A strictly proper scoring rule is used to

calculate the weights the decision maker should use. If the

calibration score of the expert e is at least as high as a threshold

value the expert’s weight is obtained as:

w(e) = Cal(e)* Inf(e), if the expert’s calibration score is less than

the threshold value α. If the experts calibration is less than α, the

expert’s weight is set to zero, a situation which is common in

practical applications.

The threshold value α corresponds to the significance level for

rejection of the hypothesis that the expert is well calibrated. The

value of α is identified by resolving the value that would

optimize a virtual decision maker. This virtual decision maker

combines the experts’ answers (probability distributions) based

on the weights obtained at the chosen threshold value (α). The

optimal level for α is where this virtual expert would receive the

highest possible weight if it was added to the expert pool and

had its calibration and information scored as the actual experts.

When α has been resolved the normalized value of the experts

weights w(e) are used to combine their estimates of the uncertain

quantities of interest.

4 Data Collection Method
This section presents how the survey data was collected by

explaining: how seed questions for Cooke’s classical method

were assessed; which population and sample of experts that was

chosen; how the measurement instrument was developed and

tested.

4.1 Seed questions
As the experts performance on answering the seed questions are

used to weight them, it is critical that the seeds are highly

validated and also that they lie in the same domain as the studied

variables. Thus, the seeds should represent the truth and it

Paper E: Estimates of success rates of denial-of-service attacks

185

should be difficult to tell them apart from the questions of the

study. They need to be drawn from the respondents’ domain of

expertise, but need not necessarily be directly related to

questions of the study [13].

Naturally, the robustness of the weights attributed to individual

experts depends on the number of seeds used. Experience shows

that eleven seed questions are more than enough to see

substantial difference in calibration [13]. This study used eleven

seed questions to weight the respondents.

These eleven seed questions were of two types. The first type

asked the respondents to estimate characteristics of known

vulnerabilities related to DoS attacks. The correct answer was

drawn from US Department of Commerce National

Vulnerability Database [5]. The second type of question related

to actual distributed DoS attacks of activity and how it

influenced enterprises. The data for these questions came from

the survey result presented in [15]. Summaries of the actual

questions are presented in Table 3.

Paper E: Estimates of success rates of denial-of-service attacks

186

Table 3. Seed Questions.

Question Value

(%)

1 What is the share of known vulnerabilities with some impact on

availability?

71

2 Of the known vulnerabilities with some impact on availability, how

large portion can be exploited from external networks?

85

3 Of the known vulnerabilities with some impact on availability, how

large portion requires that the attacker can bypass authentication?

5

4 What is the share of known vulnerabilities with some impact on

availability that affect Windows 7?

85

5 What is the share of known vulnerabilities with complete impact

on availability?

23

6 What portion of organizations in EMEA and US that operate their

business online has an important online reputation use some on-

premise/in-house DDoS protection technology?

65

7 What portion of organizations in EMEA and US that operate their

business online or have an important online reputation over

provision their bandwidth to protect against potential DDoS

threats?

28

8 What portion of organizations in EMEA and US that operate their

business online, have an important online reputation or operate

financial services are primarily suffering from target DDoS attacks

and aware of whom the attackers are?

30

9 What portion of organizations in EMEA and US that operate their

business online or have an important online reputation or operate

online financial services is primarily suffering from random DDoS?

52

10 What portion of organizations in EMEA and US that operate their

business online or have an important online have experienced a

DDoS attacks during a year that did disrupt services?

31

11 What portion of organizations in EMEA and US that operate their

business online, has an important online have experienced and has

experienced DDoS attacks needed more than 5 hours to recover

from the most severe attack?

41

4.2 The domain experts
Studies of expert’s calibration have concluded that experts are

well calibrated in situations where with learnability and with

ecological validity [16]. Learnability comes with models over the

domain, the possibility to express judgment in a coherent

quantifiable manner that could be verified, and the opportunity

to learn to from historic predictions and outcomes. Ecological

validity is present if the expert is used to making judgments of

the type they are asked for.

Paper E: Estimates of success rates of denial-of-service attacks

187

This study asks questions on the success of attempted DoS

attacks, given different conditions. These judgments can be

expressed in a quantifiable coherent and quantifiable manner.

Persons with experience in DoS attacks (directly or indirectly)

will also have access historic outcomes to learn from. Good

candidates for this are researchers and penetration testers in the

security field. These can be expected to both reason in terms of

success or failure of an attacks in different condition. They also

make such judgments in their line of work and evaluate different

options (i.e., there is ecological validity). DoS attack researchers

were therefore chosen as the population to survey.

To identify suitable security researchers articles published in the

SCOPUS [17], INSPEC or Compendex [18] databases between

January 2005 and September 2010 were reviewed. Authors who

had written articles in the information technology field with any

of the words “denial of service attack” or “denial-of-service

attack” in the title, abstract, or keywords were identified. If their

contact information could be found they were added to the list

of potential respondents, resulting in a sample of 1378

respondents. After reviewing and screening respondents and

their contact information a sample of 1065 individuals was

assessed. Of these the used contact information to at

approximately 180 turned out to be incorrect or outdated.

Out of approximately 885 researchers invited to the survey 296

opened the survey and 65 submitted answers to questions in the

survey. A response rate of this magnitude is reasonable to expect

from a slightly more advanced survey as this. Consistency checks

and completeness checks were used to ensure the quality of

answers used in the analysis. After these controls 23

respondents’ answers remained and these 23 were used in the

final analysis.

As recommended by [19], motivators were presented to the

respondents invited to the survey: i) helping the research

community as whole, ii) the possibility to win a gift certificate on

literature, and iii) being able to compare their answers to other

experts after the survey was completed.

Paper E: Estimates of success rates of denial-of-service attacks

188

4.3 Elicitation instrument
A web survey was used to collect the probability distributions

from the invited respondents. The survey was structured into

four parts, each beginning with a short introduction to the

section. First, the respondents were given an introduction to the

survey as such that explained the purpose of the survey and its

outline. In this introduction they also confirmed that they were

the person who had been invited and provided information

about themselves, e.g., years of experience in the field of

research. Second, the respondents received training regarding the

answering format used in the survey. After confirming that this

format was understood the respondents proceeded to its third

part. In the third part both the seed questions and the questions

of the study were presented to the respondents. Finally, the

respondents were asked to provide qualitative feedback on the

survey and the variables covered by it.

Questions in section three were each described through a

scenario entailing a number of conditions. Scenarios and

conditions for the seed questions can be found in Table 3;

scenarios and conditions for the questions of interest in this

study is described in section 5.

In the seed questions and the questions on semantic attacks the

respondent was asked to provide a probability distribution that

expressed the respondent’s belief. As is custom in applications of

Cooke’s classical method this probability distribution was

specified by setting the 5th percentile, the 50th percentile (the

median), and the 95th percentile for the probability distribution.

In the survey the respondents specified their distribution by

adjusting sliders or entering values to draw a dynamically

updated graph over their probability distribution. The three

points specified by the respondents defines four intervals over

the range [0, 100]. The graphs displayed the probability density

as a histogram, instantly updated upon change of the input

values.

In the questions concerning brute force attacks, the respondent

also specified a probability distribution through the 5th, 50th and

Paper E: Estimates of success rates of denial-of-service attacks

189

95th percentile. However, they now specified the number of

hosts the attacker would need to control to make 5, 50 or 95

percent of the legitimate requests being dropped. As before the

estimates dynamically updated a graph representing the answer.

Use of graphical formats is known to improve the accuracy of

elicitation [20]. Figures and colors were also used to complement

the textual formulations and make the content easier to

understand. In Figure 1 the format presented to respondents is

exemplified.

Figure 1. Example of questions and answering formats
used in the survey.

Elicitation of probability distributions is associated with a

number of issues [20]. Effort was therefore spent on ensuring

that the measurement instrument held sufficient quality. Before

distribution of the survey the used question format as such had

been tested in a pilot study on other security parameters. In that

pilot study a randomized sample of 500 respondents was invited;

34 of these completed the pilot during the week it was open. The

questions in this pilot survey were presented in the same way as

Paper E: Estimates of success rates of denial-of-service attacks

190

in the present survey. A reliability test using Cronbach’s alpha

[21], [22] was carried out using four different ways to phrase

questions for one variable. Results from this test showed a

reliability value of 0.817, which indicates good internal

consistency of the instrument.

5 Results
This section presents the result of the analysis performed on the

judgment of the 23 experts. In section 5.1 the overall

performance of the respondents on the seed questions is

presented. In section 5.2 the synthesized estimates of those

respondents who were assigned weight are presented.

5.1 Respondents’ performance

As in many other studies involving expert judgment many of the

experts were poorly calibrated on the seed questions. Their

calibration score varied between

3.853*10-11 and 0.3697 with a mean of 0.0375; their information

score varied between 0.222 and 1.974 with a mean of 1.00.

Cooke’s classical method aims is to identify those respondents

whose judgment is well calibrated and informative. The virtual

decision maker was optimized at a significance level (α) of

0.1317. This meant that two experts were assigned a weight.

They received weights 0.5288 and 0.4712 after normalization. As

noted above it is not uncommon that a substantial number of

respondents receive the weight zero with this method. The aim

is to identify those respondents that are likely to be well

calibrated on the questions at issue.

5.2 Success rate in the scenarios

The respondents’ weights were used to construct the estimates

on denial of service attacks’ success rate given different

conditions, i.e., the weighted mean of their distributions was

calculated. The estimated distributions were assumed to be

distributed in the same way as they were presented to the

Paper E: Estimates of success rates of denial-of-service attacks

191

respondents, i.e., as depicted in Figure 1. Note that certain

variables are kept constant over the scenarios, c.f. section 2.3.

5.2.1 Semantic attacks

As depicted in Table 4 the synthesized estimates show clear

differences among the scenarios. The median for the scenarios

varies between 16 and 76 percent; the value at the 5th percentile

varies between 2 and 32 percent; the value at the 95th percentile

varies between 56 and 95 percent.

In general it is more difficult to cause DoS for a single service

than it is to cause DoS for an entire machine. As expected it is

also more difficult to cause DoS in scenarios where there is

access controls restricting access and where there is no software

vulnerabilities.

The estimates in Table 4 are on the same format as results from

a factorial experiment investigating all possible combinations.

The influence strength of variables and their interactions can be

calculated by comparing the scenarios with each other. For

instance, the mean influence a software vulnerability (SV) has

can be assessed as the mean of pairwise difference between

scenarios #1 and #3, #2 and #4, #5 and #7, and #6 and #8.

Table 4. Attack scenarios for semantic attacks.

Target SV AC 5%

value

50%

value

95%

value

Expected

value

1 Machine Yes Yes 0.32 0.76 0.95 0.72

2 Machine Yes No 0.14 0.56 0.80 0.53

3 Machine No Yes 0.22 0.62 0.94 0.60

4 Machine No No 0.05 0.37 0.69 0.38

5 Service Yes Yes 0.10 0.48 0.93 0.50

6 Service Yes No 0.08 0.25 0.67 0.30

7 Service No Yes 0.11 0.42 0.86 0.46

8 Service No No 0.02 0.16 0.56 0.21

 The variable weights are depicted in Table 5. The values show

the influence this variable, or variable combination, have on the

success probability. The target and presence of a software

Paper E: Estimates of success rates of denial-of-service attacks

192

vulnerability are most important. If a machine is targeted (and

not a specific service alone) the probability of success increase by

19 percent on average; the increase that comes from a software

vulnerability is 21 percent. If the attacker has access credentials it

increases the success rate with about 10 percent on average. The

variables are more or less independent. This can be seen from

the low values associated with variable combinations. These

show the impact these particular combinations have on the

success probability. For instance, the combination of software

vulnerability and access credentials has the joint effect on the

expected value of minus two percent units. The joint effect in

addition to their individual influence of 21 and 10 percent units

is thus comparably small.

Table 5. Semantic attacks – influence of variables on the
success rate.

Variable or variable

combination

5%

value

50%

 value

95%

value

Expected

value

Machine +0.11 +0.25 +0.09 +0.19

SV +0.12 +0.24 +0.24 +0.21

AC +0.06 +0.12 +0.08 +0.10

Machine & SV +0.06 -0.01 -0.04 -0.01

Machine & AC +0.04 +0.05 -0.02 +0.03

SV & AC -0.02 -0.02 -0.04 -0.02

Machine & SV & AC +0.02 -0.01 -0.02 0.00

5.2.2 Brute force attacks

Table 6 lists the estimates for brute force attacks in terms of the

number of hosts required to attain a certain level of unavailability

for users, i.e., 5, 50 and 95 percent ignored legitimate traffic. An

intrinsic interval [13] of 10 percent was used to estimate the

expected number of host required to denial a legitimate user

access.

Paper E: Estimates of success rates of denial-of-service attacks

193

Table 6. Attack scenarios for brute force attacks – hosts
required to cause unavailability.

Roaming Load

balancing

5%

unav.

50%

unav.

95%

unav.

Expected

value

1 Yes Yes 15 30 58 33

2 Yes No 15 21 47 25

3 No Yes 15 26 43 26

4 No No 10 18 38 20

The variable weights derived from these scenarios are shown in

Table 7. Both load balancing and roaming has an effect on the

number of host required. The joint effect is marginal also here.

To have both at the same time only increase the expected

number of hosts required with one, in addition to their

individual effects.

Table 7. Brute force attacks – influence of variables on
hosts required to cause unavailability.

Variable or variable

combination

5%

value

50%

value

95%

value

Expected

value

Load balancing +2.5 +3.5 +12 +6

Roaming +2.5 +8.5 +8 +7

Load balancing & Roaming -2.5 +0.5 +3 +1

6 Discussion
The method used to analyze the experts’ judgments and combine

these is discussed in section 6.1 below. The elicitation instrument

used is discussed in section 6.2. The result as such and the

importance variables included in the study are discussed in in

section 6.3.

6.1 The expert judgment analysis
In this study Cooke’s classical method [13] was used to

synthesize expert judgments. This performance based method

aims to select the experts that are well calibrated and combine

their judgments in an optimal way. The track record of this

method [14] positions it a best-practice when it comes to

combining eliciting expert judgment of uncertain quantities.

Paper E: Estimates of success rates of denial-of-service attacks

194

Eleven seed questions were used to evaluate calibration and

information scores. These seed questions are of two types. The

first type of seed questions is drawn from a vulnerability

database [5]. The second type is drawn from a survey on brute

force attacks [15]. They have an obvious relation to the questions

of interest and are therefore suitable for rating the respondents.

A concern to the validity is that these sources are available to the

respondents who could have used them to identify the answers

to the seed questions. If they would do so these seeds would not

work well as a gauge for how well calibrated and informative the

expert’s own judgment is. However, it is unlikely that anyone did

so. None of the respondents answering the survey has given

comments that indicate that they have realized that the correct

answer can be found in online databases or in publications. Also,

the uncertainty expressed in their answers suggests that they did

not base them directly on these sources.

The answers on the seed questions show that many experts in

the field are poorly calibrated, i.e., their estimates do not match

empirical observations well. Two respondents were assigned

weight when the virtual decision maker was optimized. It is

appropriate to perform robustness test of the solution when

applying Cooke’s classical method [13]. These are made with

respect to both seed variables experts by removing one at a time

and investigating the impact of this removal [13]. Such tests were

performed and no undue influence was identified.

Experts are better at estimating quantities in domains where they

are possible to learn from observations, e.g. from experiments or

simulations [16]. In the survey the respondents were asked to

state from where they had obtained the knowledge used to

answer the survey’s questions. Of the 22 respondents whose

assessment was analyzed 10 had defended systems in practice, 20

had learnt from simulations, 22 had learnt from literature and 9

had learnt it from experiments. The two respondents receiving

weight from Cooke’s classical method had defended systems,

learnt from simulations, and learnt from literature.

Paper E: Estimates of success rates of denial-of-service attacks

195

6.2 Validity and reliability of the

elicitation instrument
Cooke [13] suggests that seven guidelines used when data is

elicited from experts: (1) formulate clear questions, (2) use an

attractive format for the questions and a graphical format for the

answers, (3) preform a dry run, (4) have an analyst present

during the elicitation, (4) prepare an explanation of the elicitation

format and how answers will be processed, (6) avoid coaching

and (7) keep elicitation sessions to less than one hour long.

This study follows with all these guidelines except (4) – to have

an analyst present during elicitation. The invited researchers were

given contact information to the research group when invited to

the survey which they were encouraged to use any if questions

arose. However, it is possible that analysts’ physical absence

suppressed some potential issues from being brought up during

elicitation. The respondents were asked to comment the clarity

of the questions and the question format used in the survey.

Two respondents indicated that they had difficulties with

answering in the format used while several others stated that the

format was clear and understandable. The two respondents who

had difficulties would have preferred a format without

probability distributions instead; an ordinal rating was suggested

instead. While this probably would make the questions easier to

answer it would also be less expressive and more difficult to

interpret.

6.3 Variables importance to the

success rate
This study investigated three variables related to semantic attacks

and two variables related to brute force attacks.

With respect to sematic DoS attacks the result indicates that it is

easier to cause DoS for an entire machine than it is to cause DoS

in a specific service. The increase on the success rate is on

average 20 percentiles, which increase on the success rate with

about 50 percent on average. The same magnitude of influence

comes from to the existence of software vulnerabilities. If the

Paper E: Estimates of success rates of denial-of-service attacks

196

attacker can authenticate itself to the target this increase the

success probability with approximately 10 percent units.

Removing software vulnerabilities and implementing access

control that protects service’s functionality against illegitimate

users are two measures that can be implemented by decision

makers. Together they would decrease the success probability

with about 30 percent units and thereby reduce the probability

of success to about half of what it would be without these

measures.

With respect to brute force attacks, e.g., distributed DoS attacks,

load balancing and roaming both increase the requirements

placed on the attacker. Together they increase the number of

hosts required to succeed with DoS by about 50 percent.

Looking at the confidence intervals in Table 7 it also appears as

if load balancing primarily help to protect against a complete

DoS (c.f. the 95 percent value in Table 7), but it has less impact

on the number of hosts required to make some users experience

unavailability.

The scenarios estimated in this study do not detail all variables of

relevance. As this was the case the respondents were asked to

provide probability distributions representing the values for

typical enterprises. If variations exists between enterprises (e.g. in

terms of other protection mechanisms, hardware capacity, etc.)

this should be accounted for in the estimates and thereby spread

the estimated distributions over larger intervals. Judging from

the span of the intervals on semantic attacks there are

possibilities to increase (or decrease) the defense with other

variables than the one included here. For instance, for the five

percent of best defended systems the success probability of

semantic attacks is below two percent, given that software

vulnerabilities are removed, access controls are between the

attacker and the target is a specific service (see #8 in Table 7).

Conversely, the success probability for the same scenario is

above 56 percent for the least defended five percent. How much

of this uncertainty that arise from epistemic uncertainty and how

much that arise from variations between enterprises is difficult to

know. But it appears likely that both contribute to the

uncertainty reflected in the estimates.

Paper E: Estimates of success rates of denial-of-service attacks

197

The variables included in this study were selected based on

literature with the assistance of domain experts. To narrow the

intervals and allow more precision, further variables need to be

included in the scenarios’ definitions. The respondents of the

survey were asked to suggest other variables that they would like

to replace the selected variables with. The suggestions were

diverse, which suggests that the most significant factors were

included. The full list of suggestions of variables included:

defining if it is forced or strict load balancing, the amount of

redundancy used by the load balancer, adjustments of the load

balancer, routing schemes, the number of requests the target is

designed for, and bandwidths of connections. Further work

could explore these variables impact and produce narrower

probability distributions. Based on the result presented here it

appears as if the influences of the studied variables are

independent. This could be valuable input to further work on

this field.

7 Conclusion
This research generalizes quantities related to DoS attacks using

expert judgment available in the research community and present

approximate estimates on attackers ability cause DoS. The result

shows the weight of key factors in semantic attacks and brute

force attacks. Applying measures that are included in this

research does have a significant impact on the success rate for

semantic attacks and the number of controlled host required for

a brute force attack. However, the result also shows the variation

that is expected to be found between enterprises solutions

through the probability intervals produced. The cause of these

intervals is likely to arise because from a number of factors. The

impact of other factors and their influence on the success of

DoS attacks could be investigated in further work. This could

include investigations of how large the epistemic uncertainty is

about the actual values, i.e., how precise the research

community’s knowledge is on DoS attacks and factors that

influence their success.

Paper E: Estimates of success rates of denial-of-service attacks

198

8 References
[1] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of

network-based defense mechanisms countering the DoS and
DDoS problems,” ACM Computing Surveys, vol. 39, no. 1, p. 3-
es, 2007.

[2] R. Chertov, S. Fahmy, and N. B. Shroff, “Emulation versus
simulation: A case study of TCP-targeted denial of service
attacks,” in Testbeds and Research Infrastructures for the Development
of Networks and Communities, 2006. TRIDENTCOM 2006. 2nd
International Conference on, 2006, p. 10–pp.

[3] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and
DDoS defense mechanisms,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 2, p. 39, Apr. 2004.

[4] A. Hussain, J. Heidemann, and C. Papadopoulos, “A
framework for classifying denial of service attacks,” in
Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, 2003, p.
99110.

[5] NIST, “National Vulnerability Database Home Page,” 2010.
[Online]. Available: http://nvd.nist.gov/. [Accessed: 16-Jun-
2010].

[6] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to
the common vulnerability scoring system version 2.0,” in
Published by FIRST-Forum of Incident Response and Security Teams,
2007, pp. 1-23.

[7] A. Vorobiev and J. Han, “Security Attack Ontology for Web
Services,” 2006 Second International Conference on Semantics,
Knowledge, and Grid, pp. 42-42, Nov. 2006.

[8] X. Qie, R. Pang, and L. Peterson, “Defensive programming:
Using an annotation toolkit to build DoS-resistant software,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 45–
60, 2002.

[9] C. Douligeris, “DDoS attacks and defense mechanisms:
classification and state-of-the-art,” Computer Networks, vol. 44,
no. 5, pp. 643-666, Apr. 2004.

[10] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, and T. Znati,
“Proactive server roaming for mitigating denial-of-service
attacks,” in Information Technology: Research and Education, 2003.
Proceedings. ITRE2003. International Conference on, 2003, pp. 286–
290.

[11] C. Sangpachatanaruk, S. M. Khattab, T. Znati, R. Melhem, and
D. Mossé, “A simulation study of the proactive server roaming
for mitigating denial of service attacks,” in Proceedings of the 36th
annual symposium on Simulation, 2003, p. 7.

Paper E: Estimates of success rates of denial-of-service attacks

199

[12] R. T. Clemen and R. L. Winkler, “Combining probability
distributions from experts in risk analysis,” Risk Analysis, vol.
19, no. 187, pp. 187-204, 1999.

[13] R. Cooke, Experts in uncertainty: opinion and subjective probability in
science. 1991.

[14] R. Cooke, “TU Delft expert judgment data base,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 657-674, May.
2008.

[15] Forrester Consulting, “The trends and Changing Landscape of
DDoS Threats and Protection,” Study on behalf of VeriSign, Inc,
2009.

[16] F. Bolger and G. Wright, “Assessing the quality of expert
judgment: Issues and analysis,” Decision Support Systems, vol. 11,
no. 1, pp. 1-24, Jan. 1994.

[17] Elsevier B.V., “Scopus,” 2011. [Online]. Available:
http://www.scopus.com/.

[18] Elsevier Inc, “Engineering Village,” 2011. [Online]. Available:
http://www.engineeringvillage.com. [Accessed: 24-Feb-2011].

[19] S. T. Cavusgil and L. A. Elvey-Kirk, “Mail survey response
behavior: A conceptualization of motivating factors and an
empirical study,” European Journal of Marketing, vol. 32, no.
11/12, pp. 1165–1192, 1998.

[20] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, “Statistical
methods for eliciting probability distributions,” Journal of the
American Statistical Association, vol. 100, no. 470, pp. 680-701,
2005.

[21] L. J. Cronbach and R. J. Shavelson, “My Current Thoughts on
Coefficient Alpha and Successor Procedures,” Educational and
Psychological Measurement, vol. 64, no. 3, pp. 391-418, Jun. 2004.

[22] L. J. Cronbach, “Coefficient alpha and the internal structure of
tests,” Psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

200

Paper F:

The Cyber Security

Modeling Language: A

Tool for Vulnerability

Assessments of

Enterprise System

Architectures
Teodor Sommestad, Mathias Ekstedt and Hannes Holm

Abstract

The Cyber Security Language (CySeMoL) is a modeling language

for enterprise-level system architectures coupled to a

probabilistic inference engine. If an enterprise’s system

architecture is modeled with CySeMoL this inference engine can

assess the probability that attacks can be made against the

components of the system architecture.. The theory embedded

in CySeMoL, used for the attack probability calculations, is

compilation of research results within a number of security-

domains and covers a range of attacks and countermeasures. The

theory has been validated on both a component-level and on a

system-level. A test shows that the reasonableness and

correctness of CySeMoL’s assessments are comparable to those

of a security professional. Its practical utility has been tested in

case studies.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

201

1 Introduction
Security issues related to information technology (IT) continue

to be a concern in today’s society. The IT environments of many

enterprises are composed of a large number of systems

connected to form a complex system-of-systems. Security is also

a complex problem that is difficult to master. To fully estimate

the security of an enterprise’s system architecture, a large

number of issues must be considered. Enterprise systems

security managers must be able to assess how the vulnerabilities

in one system influence the vulnerabilities in other systems. In

addition, security managers must be able to assess how individual

vulnerabilities influence the security of the entire system-of-

systems, given the protection solutions that are used in different

locations in the architecture.

Enterprise systems security managers typically have a basic

understanding of their organization’s architecture and systems

and the losses incurred if assets are compromised. However, the

managers’ understanding of how vulnerabilities depend on each

other in the system-of-systems and how the vulnerabilities can

be exploited is often hazy. Support from security theory can be

obtained from security experts and the literature. However,

consulting security experts and studying the literature is both

costly and time-consuming. Generally, support is missing for

informed decision making concerning security on the system-of-

systems level.

Tools that help system-security managers to assess how

vulnerabilities in one system influence the vulnerabilities of other

systems in enterprise system architecture are valuable,

particularly if these tools can offer support without requiring

input data that are difficult to collect.

1.1 Contribution

This paper presents an analysis tool called the Cyber Security

Modeling Language (CySeMoL). This tool is built on the

framework presented in [1] and uses a probabilistic relational

model (PRM) [2] to support system-security managers in security

analysis. If an object model of the system architecture is created

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

202

according to a predefined class model, the tool can approximate

the probability that an attacker will succeed with different attacks

against the system. Security expertise is not required to create the

object model because the PRM specifies a theory on how

attributes in the object model depend on each other. The users

must only model their system architecture and properties.

The theory used in CySeMoL is based on logical relations,

experimental research in the security domain, and domain

experts’ judgment. CySeMoL covers a variety of attacks,

including software exploits, flooding attacks, abuse of obtained

privileges, and social-engineering attacks. Emphasis has been

placed on supporting security managers concerned with attacks

on industrial control systems (also known as Supervisory Control

and Data Acquisition (SCADA) systems). However, the tool can

be used for other types of domain.

This paper presents CySeMoL’s PRM and the validation of this

PRM. The PRM has been validated on the component and

system levels. On the component level, the variables and

relationships have been validated using the literature and domain

experts. On the system level, the content validity has been tested

by comparing the PRM’s output with the responses of five

security experts to a number of scenarios. In addition, the

usability of the tool is demonstrated in two case studies at large

enterprises.

1.2 Outline

Section 2 presents related works. Section 3 briefly describes the

framework presented in [1], on which this tool is built. Section 4

presents the method used to create the tool. Section 5 presents

CySeMoL’s PRM. Section 6 presents the results of validity tests.

Section 7 summarizes the paper and discusses future work.

2 Structured methods for

security assessment
A substantial number of methods have been developed to

quantify security and to support decision making related to

security. For instance, Verendel [3] reviewed more than 100

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

203

methods for security metrication. The review presented below

will cover only a subset of these methods. Emphasis is placed on

methods that are applicable to assessing the security of a system-

of-systems.

A number of prominent assessment methods require that the

user is a security expert. For instance, the IEEE standard 27000-

4 [4] and NIST’s security metric guide [5] are methods that

describe how an organization should develop and maintain a

measurement program. However, the methods do not prescribe

the measurements that should be taken or explain what different

measurement values mean for security. These methods can be

used as support when the security of a system-of-systems is

assessed. However, they leave a substantial amount of effort to

the user.

A number of methods offer concrete support and give the user a

finished aggregation framework for security properties.

Examples include the following: attack trees [6], defense trees

[7], Boolean Logic Driven Markov Processes [8], the CORAS

framework [9], Secure Tropos [10], and the model proposed by

Breu et al. [11]. These methods help users combine variables to

produce a meaningful result. Thus, the methods can help to

combine the security values of single systems into a single value

for a system-of-systems (i.e., the total risk). However, the

methods require the user to produce the security ratings. For

example, for defense trees, the user must quantify the likelihood

of attacks being successful; for Boolean Logic Driven Markov

Processes, provide time-to-compromise estimates; and in the

model of Breu et al. give threat-realization probabilities. While

some methodological support is available for quantification (e.g.,

[12]), expertise is still required. In addition, many of these

methods require the users to identify causal dependencies in

their systems, e.g., attack trees must be created before they can

be used. For some systems, such causal models can be found in

the literature, for example, the model employed [13] for

electronic voting systems.

This paper describes a method that does not require security

expertise from the user. In other words, the user of the method

must only input information about the system architecture and is

not required to provide security properties such as time-to-

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

204

compromise or attack-success probability. Instead, the security

properties for the system are derived from the system

architecture and quantified according to a generic theory.

The practical utility of a method that quantifies the security of

system architectures without requiring security expertise from

the user is obvious. However, few methods of this type exist that

are applicable to assessing the security of a system-of-systems.

For instance, the Common Vulnerability Scoring System [14]

produces assessments for a single software vulnerability, and the

model presented in [15] produces assessments for single hosts.

Several of the methods that have a high abstraction level use

best-practice standards to produce a security rating by the

organization’s compliance to the standard (e.g., Johansson’s

method [16]). The scope of such methods is useful where a

system-of-systems is assessed. However, the ratings obtained are

difficult to interpret and therefore not straightforward for

system-security managers. For instance, knowing how high a

value should be is difficult, as is deriving which risk is associated

with a certain rating. Additionally, cause-and-effect relationships

are not clear in these methods.

In recent years, a substantial number of articles have been

published to develop methods that use attack graphs. An attack

graph aims at determining which attacks can be conducted

against a system. Because potential attacks are the source of

cyber security risk, these methods fit well with decision-making

processes concerning security. CySeMoL’s approach is similar to

the approach used in attack graphs.

Methods based on attack graphs are based on a model of the

system architecture and a database of security exploits or security

vulnerabilities [17], [18]. From these data, an algorithm calculates

privileges and network states that can be reached by an attacker

who starts from a given position [17].

Since the early variants of attack graphs appeared ([19],[20]),

several tools have been developed that offer different solutions

to the problem. Differences can be seen both in terms of the

data they require as input and the output the produce when they

are applied. The most mature tools are NETSPA [21], [22],

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

205

MulVAL [23], and the TVA-tool [24]. These tools are described

below.

NETSPA has been used to analyze networks of thousands of

hosts, and its usability has been demonstrated in case studies

[22]. However, NETSPA uses a coarse model of the attacker’s

capabilities. All software vulnerabilities in the database are

considered to be exploitable by the attacker (given that the

software can be reached) [21]. No differentiation is made with

respect to the security measures implemented on the targeted

host, to whether exploiting the vulnerability requires a particular

configuration, or to the attacker’s competence. GARNET [25]

and its successor NAVIGATOR [26] build on NETSPA and add

new visualization capabilities and support for what-if analysis.

MulVAL does not treat all vulnerabilities as unquestionably

exploitable by the attacker. In MulVAL, each vulnerability is

associated with a probability to represent how likely an attacker

is to exploit the vulnerability [23]. This approach makes the

model of potential attacks more expressive. Unfortunately, such

probability values are not available in vulnerability databases. In

descriptions of the method, the access-complexity rate from the

US National Vulnerability Database has been translated into

probability values [27]. However, no arguments are given for

why this translation is used, and the validity of the translation

remains unclear. Additionally, the probabilities only represent

success rates generally and do not take into account protective

measures that increase the difficulty of exploiting a vulnerability.

The TVA tool [24] uses a database of exploits possessed by the

attacker instead of a database of vulnerabilities. The exploits are

associated with detailed pre- and post-conditions, which state

when the exploit can be applied and what state is reached after

the exploit has been applied. Thus, the analysis can be

constructed to represent an attacker armed with certain exploits.

However, no database of exploits exists that is described this

way. The data must be entered before use.

These three attack-graph methods offer different solutions to the

problem of assessing the security of a given system specification.

An issue all methods must address is the complex graphs that are

produced when systems of realistic sizes are analyzed.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

206

Additionally, they need to manage cycles in the graphs. Another

issue is obtaining the input data. All three tools described above

use the vulnerability scanner Nessus to collect these data.

However, a recent accuracy test shows that Nessus misses more

than half of the vulnerabilities when given access credentials to

the hosts in a network and four out of five vulnerabilities when

credentials are not given [28]. Thus, the automated scans on

which the three tools rely are not reliable when individual

vulnerabilities must be detected. In addition, in environments

with sensitive systems (e.g., SCADA systems), scanners must be

avoided because scanners can interrupt critical system services

[29].

Another drawback of existing tools is the type of attacks that

they cover. The tools are developed for software exploits

targeting services running on the listening ports of machines.

Thus, they lack the capability to model many relevant types of

attack, e.g., password cracking, social engineering, and denial-of-

service attacks. NETSPA has been extended to include attacks

on clients (e.g., web browsers) [30]. However, the other two

tools have not. Another matter falling outside the scope of these

tools is zero-day exploits, i.e., attacks using vulnerabilities that

are unknown to the public. The user of the tool can of course

enter hypothetical data into the database and perform the

analysis with these data. However, competence is required to

identify which zero-day attacks can be reasonably expected from

the attacker.

CySeMoL also models attacks and assesses the attacks that an

attacker can execute. Compared with the three tools discussed

above, CySeMoL analyzes a wider range of attack types and

security measures. CySeMoL’s output is probabilistic (as in

MulVAL) and estimates the probability that different attacks can

be accomplished against assets in the system architecture. The

probabilities used in these calculations have been derived from

experimental studies and studies eliciting the judgment of

domain experts.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

207

3 The Framework used:

the PRM Template
The Cyber Security Modeling Language (CySeMoL) is built on

the framework presented in [1]. This framework is a template for

a probabilistic relational model (PRM) for security-risk analysis.

Section 3.1 briefly describes the PRM formalism. Section 3.2

describes the security template for the PRMs presented. Section

3.3 describes the part of this template that is used in CySeMoL.

3.1 Probabilistic relational models

A PRM [2] specifies how a Bayesian network [31] should be

constructed from an object model, i.e., how a Bayesian network

should be created from a model that instantiates a class diagram,

such as the one of the Unified Modeling Language (UML).

In a PRM, classes can have attributes and reference slots. The

attributes are random variables with states from a discrete

domain. The reference slots refer to other classes and express

which relationships a class has with other classes. For instance,

the attributes System.Available and Person.Certified could have the

domain of values {True,False}. The reference slot

System.Administrator could refer to the class Person.

The attributes in the PRM are associated with a set of parents.

The parents of an attribute A are attributes in the object model

that A’s value depends on. Parents are defined using a chain of

reference slots that leads from the child attribute’s object to the

parent attribute’s object. For instance, the attribute

System.Available could be assigned the parent attribute

System.Administrator.Certified using the reference slot Administrator

of the class System. In this case, the slot chain is the single slot

System.Administrator. Slot chains comprising multiple reference

slots are also possible. If a slot chain points to attributes of more

than one object in an instantiated model, an aggregate is used,

e.g., one of the Boolean operators OR or AND.

Each attribute is associated with a conditional probability table

that defines the attribute’s value given all possible combinations

of states in the attribute’s parents. For instance, the attribute

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

208

System.Available would be given different probabilities that

express the attribute’s value when System.Administrator.Certified is

True and False. The probabilistic model enables the value of

attributes in an instantiated object model to be inferred. Such

inference can also infer values for attributes with no assigned

state.

In essence, a PRM defines how a Bayesian network shall be

generated using the attributes of an object model. Thus, a PRM

constitutes a formal machinery for calculating the probabilities of

object properties in various architecture instantiations. For

example, a PRM could be used to assess the availability of

systems given that certain administrators are assigned to the

systems.

3.2 The PRM template for security-

risk analysis

In [1], a template for PRMs is defined for security-risk analysis.

This template defines abstract classes together with attributes,

reference slots and conceptual-attribute parents. The classes in

this template are: Asset, Owner, Threat, ThreatAgent, AttackStep, and

five types of Countermeasure. The countermeasures are:

ContingencyCountermeasure, PreventiveCountermeasure,

DetectiveCountermeasure, ReactiveCountermeasure and

AccountabilityCountermeasure.

If a PRM is constructed according to this template and the

PRM’s conditional probabilities are assigned, the PRM can be

used to perform two types of analysis. The first and more

extensive analysis requires the instantiation of all the classes and

can produce values for the expected economic losses for the

architecture. This analysis includes consideration of the

probability that different attack scenarios will be attempted and

the expected loss that would be incurred if an attack is

successful. The second analysis uses a subset of the template and

can be used to calculate reachability values for different attack

paths (threat instances), as in attack graphs. CySeMoL employs

the second type of analysis.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

209

3.3 The scope of the PRM
CySeMoL focuses on assessing the probability that attack paths

can be accomplished given that they are attempted. Thus,

CySeMoL uses a subset of the classes, attributes and

dependencies defined in [1]. The class AttackStep is used to

represent attacks together with the probability that the attacks

are successful and that they are detected when they are

attempted. The classes PreventiveCountermeasure,

DetectiveCountermeasure and ReactiveCountermeasure are also included.

Only one type of ThreatAgent is considered: a threat agent who

has one week and publicly available tools.

CySeMoL’s PRM includes attacks and countermeasures of

relevance to industrial control and SCADA systems security.

Threats against these systems are primarily related to the

systems’ availability and integrity properties (and not

confidentiality). However, SCADA systems comprise the same

type of subsystems as other information systems. Thus, the PRM

can be used to analyze such systems but with limited support for

threats against confidentiality. In addition, the PRM has other

limitations, e.g., the countermeasures that the PRM can cover.

These limitations are discussed in section 4.

4 The Method used to

construct CySeMoL
This section presents the method used to construct CySeMoL,

including a description of the qualitative structure (section 4.1)

and the quantitative parameters associated with this structure

(section 4.2). A summary is given in section 4.3.

Because this tool has been the subject of a considerable number

of studies in the security field, this section does not describe

each study in detail. The interested reader can find more

information about these studies in the references.

4.1 Qualitative structure
The PRM’s qualitative structure includes everything but the

quantitative parameters, i.e., the classes, reference slots,

attributes, and parents of attributes. CySeMoL’s qualitative

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

210

structure has been developed using the literature and judgment

of security experts.

4.1.1 Literature study

The literature was studied extensively to identify an initial set of

assets and which attack steps to include. This research included a

review of a large number of textbooks (e.g., [32]), standards and

reports (e.g., [29]), overviews (e.g., [33]) and security databases

(e.g., [34]). Descriptions of attacks and countermeasures in these

sources were used to create an initial model of a suitable level of

abstraction and scope.

When the initial model was finished, the literature on specific

attacks was consulted. This literature was used to determine the

parents of attack steps, i.e., the countermeasures and privileges

(completed attack steps) that influenced the probability that an

attack step could be accomplished. A large number of sources

were used for each type of attack. For instance, sources such as

[35–39] were used to identify parents of remote code-

exploitation attacks, and sources such as [40–42] were used to

identify the parents of password-cracking attacks.

4.1.2 Review by domain experts
Before more detailed studies were conducted on specific attack

types, the initial model was reviewed by three domain experts.

All three were professional penetration testers. In interviews,

these domain experts were asked to evaluate whether the model

included the variables that are most useful when the security of a

system-of-systems is to be assessed. To be useful, a variable

should not only be important to security but also possible to

assess. Thus, the experts were asked to consider which

information was worthwhile to collect from a decision-making

perspective. Several minor changes were made based on the

suggestions by the experts. For example, firewall was modeled

with fewer attributes and password protection was emphasized.

In addition to the general validation of the model, a number of

domain experts were consulted on specific attacks and the

parents to include for these attacks. Because such input requires

a good understanding of the specific type of attack, different

domain experts were used for different areas (cf. Table 1). For

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

211

example, three persons were interviewed about intrusion-

detection systems and the performance variables of such

systems, and three persons were interviewed regarding remote

arbitrary-code exploits. Few changes were suggested to the initial

model during these validation efforts. Input from the domain

experts helped to define variables in a practical way and to

determine which variables to include (e.g., variables influencing

the effort required to find new software vulnerabilities). Overall,

the domain experts agreed with each other about variables

relevance. This agreement suggests that the final model offered a

good tradeoff between scope and usability.

4.2 Quantitative parameters
A PRM requires quantitative parameters for conditional

probability distributions. CySeMoL’s PRM consists of both

logical dependencies with deterministic influences and

probabilistic dependencies with uncertain influence. These

dependencies are used to estimate the probability that a

professional penetration tester can succeed with attacks against

the architecture within one week using publicly available tools.

4.1.3 Logical, deterministic dependencies
A substantial portion (82 %) of the entries in the PRM’s

conditional probability tables is deterministic. These

deterministic dependencies are used in the following cases:

a) Attack steps that are specializations of the same goal
are aggregated into one attack step to simplify the
model.

b) Certain preconditions are required for an attack to be
possible.

The deterministic dependencies created for the first case are

modeling constructs added for practical reasons. For example,

denial-of-service attacks against services are decomposed into

two variables representing two ways denial-of-service attacks can

be conducted (semantic attacks or flooding attacks). This

decomposition makes the conditional probabilities for each

attack type easier to follow.

Deterministic dependencies of the second type are present when

a condition is necessary to accomplish an attack step. For

example, to perform remote code execution against a software

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

212

service, two necessary (but not sufficient) conditions are that the

attacker must be able to send data to the port the service listens

to and that the service has a software vulnerability. The second

type of deterministic dependency was identified from the

literature and validated by domain experts in interviews.

Examples of such dependencies are given in section 5.2.

4.1.4 Probabilistic, uncertain dependencies
Dependencies not determined by logical dependencies are

uncertain and are defined using probabilities. Such dependencies

are uncertain because the PRM does not include all the details

that determine the variable’s actual, which is the case if the PRM

lacks a variable that could be important (e.g., the countermeasure

application whitelisting) or if a variable’s states represent a range

of values (e.g., the severity rating of software vulnerabilities,

divided into three levels). Such simplifications arise from the

practical reasons discussed above, i.e., the creation of an instance

model should not be costly.

Some probabilistic relationships could be specified based on

published data from experiments and observations. For instance,

data on the success of password cracking given different

conditions could be found in [40–43]. However, for most of the

conditional probabilities required, reliable quantitative data

cannot be found in the literature. For instance, experiments on

intrusion-detection systems are difficult to generalize from [44],

and data on efforts required to find new software vulnerabilities

are not gathered in a systematic way [45].

When reliable data could not be found in the literature, estimates

were collected from domain experts. The data collected this way

come from five surveys. The number of respondents to these

surveys varies between four and 165 individuals. In four of the

five surveys ([46–49]), the respondents’ judgment was weighted

using Cooke’s classical method [50], a well-established method

for weighting domain experts based on their ability to accurately

assess a set of test questions on the same topic as the real

questions. The effectiveness of the method is demonstrated in

[50]. In the fifth study [51], the experts were weighted based on

the number of real systems on which they had tested the

variable’s state.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

213

4.2 Summary
The attacks and countermeasures included in CySeMoL were

identified using the literature and input from domain experts.

The aim of the qualitative structure was to be as complete as

possible while remaining useful to a typical system-security

manager. The quantitative parameters in the PRM are

deterministic dependencies between attributes and uncertain

dependencies between attributes. The probabilities for the

uncertain dependencies are derived from observations of

systems, experiment, and studies based on structured expert

elicitation. An overview is given in Table 1.

Table 1. Overview of methods used

Part of the PRM Qualitative

validation

method

Parameterization method

Discovering new

vulnerabilities

Literature and 3

experts.

Cooke’s classical method

applied to 17 domain

experts’ judgment [46].

Remote arbitrary

code exploitation

attacks

Literature, pilot

study, and 3

experts.

Cooke’s classical method

applied to 21 domain

experts’ judgment [47].

Intrusion

detection

Literature and 3

experts.

Cooke’s classical method

applied to 165 domain

experts’ judgment [49].

Denial-of-service

attacks

Literature and 2

experts.

Cooke’s classical method

applied to 23 domain

experts’ judgment [48].

Exploitation of

network

configuration

mistakes

Literature and 2

domain experts.

Data described in [52] and

[53] combined with four

domain experts’ judgment

[51].

Attacks on

password

protection

Literature and

one domain

expert.

A review and synthesis of

password-guessing data [40–

42] and the capabilities of

rainbow tables [43].

Social-

engineering

attacks

Literature. Experiments [54–57] on

social-engineering attacks.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

214

5 The Cyber Security

Modeling Language’s

PRM
This section describes the main contribution of this paper:

CySeMoL. This section gives an overview of the metamodel

(section 5.1), the deterministic and probabilistic dependencies

embedded in the PRM (section 5.2), and the instantiation of

attack paths (section 5.3). A full description of all concepts and

dependencies is not given here because of the space the

description would require. The description presented here gives

an overview of CySeMoL and provides concrete examples of

parts of the model. The interested reader can download the PRM

and the software tool in which the PRM is implemented from

[58].

5.1 Metamodel overview

The metamodel comprises 22 classes, 102 attributes, and 32 class

relationships (reference slots). These classes, attributes, and class

relationships dictate what information an architecture model

should contain and are depicted in Figure 1. Two types of

attribute are distinguished in Figure 1: countermeasures and

attack steps. The upper box in a class describes the

countermeasures associated with the class. The lower box

describes the attack steps associated with the class. Relationships

are marked by the dashed lines between classes.

The metamodel contains three concretized types of software:

OperatingSystem, Service, and ApplicationClient. All types of

SoftwareInstance are related to the SoftwareProduct the types are an

installation of. An OperatingSystem can be related to a NetworkZone

in which traffic between software instances is permitted (i.e., not

filtered). The class NetworkInterface can connect multiple instances

of NetworkZone and mark the instances as trusted or untrusted

zones. A NetworkInterface can allow certain instances of DataFlow.

The other data flows are assumed to be blocked. A DataFlow has

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

215

a Protocol, and a DataFlow can read or write to a DataStore owned

by a SoftwareInstance.

 The NetworkInterface is related to the Firewall that enforces the

NetworkInterface’s rules. A Firewall can be related to the class

DeepPacketInspection and to an IDSsensor that enhances the

Firewall’s capabilities. An IDSsensor can be associated with an

OperatingSystem when the OperatingSystem is a host-based

intrusion-detection system. A DeepPacketInspection can be

associated with the Service on which the DeepPacketInspection

focuses or the ApplicationClient for which it acts as a proxy.

All types of SoftwareInstance can be associated with an

AccessControlPoint, which controls access to the software, e.g., a

network Service or OperatingSystem. An AccessControlPoint is

associated with an AuthenticationMechanism, which authenticates

access requests and the Account instances that are allowed access.

Because passwords are common, the two preceding classes have

been specialized to PasswordAuthenticationMechanism and

PasswordAccount. An Account is owned by a Person, and a Person can

be covered by an AwarenessProgram.

A ZoneManagementProcess is related to a NetworkZone and describes

how systems within the NetworkZone are managed, e.g., if the

machines have been hardened.

5.2 Attribute dependencies

The 22 classes have 102 attributes. The attributes’ values in an

instantiated model are used to assess the security of the modeled

enterprise systems. More precisely, the probability that certain

attack paths (i.e., chains of attack steps) can be accomplished is

used to assess the security of the architecture. This section gives

examples of attack paths that may be instantiated in an instance

model and the countermeasures that influence their probability

of success.

If an attacker attempts to log on to a SoftwareInstance, the attacker

may be required to bypass an AccessControlPoint, i.e., if the

SoftwareInstance has a relationship to the AccessControlPoint. An

AccessControlPoint is associated with an AuthenticationMechanism

and Accounts that belong to Persons who are authorized to access

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

216

the system. An Account’s password may be compromised by

being guessed online, offline, or through social engineering.

ZoneManagementProcess

NetworkZone

DNSSEC

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

DataFlow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

PhysicalZone

Access

SoftwareInstallation

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopPatchableExploitForLowSeverityVuln

DevelopPatchableExploitForMediumSeverityVunl

DevelopPatchableExploitForHighSeverityVuln

DevelopUnpatchableExploitForLowSeverityVuln

DevelopUnpatchableExploitForMediumSeverityVunl

DevelopUnpatchableExploitForHighSeverityVuln

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

Service

OperatingSystem

ConnectToFromOtherZone

ExecutionOfArbitaryCodeFromOtherZone

ConnectToFromSameZone

ExecutionOfArbitaryCodeFromSameZone

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

Person
SecurityAwarenessProgram

Account

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAccount

AuthenticationMechanism

PasswordAuthentication

Mechanism

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

UntrustedZone
TrustedZone

AllowedDF

PerimeterIDS

Protocol

Read Write

Medium

PhysicalZone

Product

PhysicalZone

ManagementProcess

AuthenticationMechanism

Owner

AwarenessProgram

HIDS

OperatingSystem

Owner

Zone

VPN Gateway

Server

Client
Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

DeepPacketInspection

DPI

Proxy

ExtractPasswordRepository
BackoffTechnique

ProxyGateway

ExecutionOfArbitaryCodeFromSameZone

ExecutionOfArbitaryCodeFromOtherZone

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicPatchableSeverityVuln

HasPublicPatchableMediumSeverityVuln

HasPublicPatchableHighSeverityVuln

HasPublicUnpatchableLowSeverityVuln

HasPublicUnpatchableMediumSeverityVuln

HasPublicUnpatchableHighSeverityVuln

FindUnknownServiceFromOtherZone

ExecutionOfArbitaryCodeInUnknownServicesFromOtherZone

AccessThroughPortableMedia

AccessTroughUIFromOtherZone

AccessFromOtherZone

FindUnknownServiceFromSameZone

ExecutionOfArbitaryCodeInUnknownServicesFromSameZone

AccessTroughUIFromOtherZone

AccessFromSameZone

ARPspoof

Firewall

Firewall

AccessControlPoint

AccessControl

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

HasAllLowSeverityPatches

HasAllMediumSeverityPatches

HasAllHighSeverityPatches

OperatingSystem

TerminalService

Access

DenialOfService

FindLowSeverityVulnerability

FindMediumSeverityVulnerability

FindHighSeverityVulnerability

Functioning

Functioning

Functioning

Figure 1. Metamodel of CySeMoL’s PRM. The upper box

in a class contains the countermeasures associated with the

class. The lower box contains the attack steps associated

with the class.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

217

Because password authentication is widely used, CySeMoL

focuses on password authentication. The difficulty of

compromising a PasswordAccount online depends on the presence

of default passwords, whether password policies are

automatically enforced, and whether the number of guesses that

can be produced is limited.

The success of offline guessing depends on the possibility of

extracting the password repository, whether password policies

are automatically enforced, whether passwords are hashed, and

whether passwords are salted. The success probability for social

engineering is decreased if the account-owner is included in an

AwarenessProgram.

Another way to obtain access to the OperatingSystem is to execute

arbitrary code via Services, ApplicationClients, or services in the

OperatingSystem that are unknown to the system owner. To

accomplish these attack steps, the attacker must be able to

connect to the SoftwareInstance in question, e.g., the attacked

Service in question. Once connected, the attacker must

accomplish a remote arbitrary-code attack.

To connect from another NetworkZone, the attacker must have

access to a machine in the other NetworkZone and be able to send

data over the NetworkZone that connects the two. Data can be

sent if the attacker can produce a request in a DataFlow that has

the Service as server or a response in a DataFlow that has the

ApplicationClient as client. Requests and responses can be

produced if the attacker has gained access to the software that

produces the responses (e.g., an operating system) or by

compromising the DataFlow’s integrity in a different way (e.g., by

executing a man-in-the-middle attack using ARP-spoofing). To

exploit unknown services in an OperatingSystem, the attacker must

find such services. The probability that the attacker can find such

services is influenced by attributes in the ZoneManagementProcess

associated to the OperatingSystem’s NetworkZone.

To connect from the same zone, the attacker must obtain an

own address in the NetworkZone. An address can be obtained by

gaining access to an OperatingSystem in the zone, by breaking the

PhysicalZone of the NetworkZone and connecting an own machine,

or by finding an unknown entry point (e.g., an undocumented

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

218

dual-homed computer) to the NetworkZone. The attributes in the

ZoneManagementProcess influence the possibility the attacker may

find unknown entries to a NetworkZone.

When an attacker can send data to the software, the attacker can

attempt to execute arbitrary code remotely. The possibility of

succeeding with this approach is influenced by the presence of

address space layout randomization, non-executable memory

protection, and whether the attacker has access rights to the

software in question. If the attack is executed from another

zone, the existence of deep-packet inspection in firewalls will

have an influence. An IDSsensor will influence the possibility of

detecting the attack. The influence of the IDSsensor depends on

whether the attack is from the same NetworkZone or not.

The possibility of performing remote arbitrary-code exploits is

also contingent on the existence of a high-severity software

vulnerability in the target. The attacker may search the

SoftwareInstance’s SoftwareProduct for publicly known vulnerabilities

that have not been patched, or the attacker may invest time in

searching for previously unknown vulnerabilities in the

SoftwareProduct. The success rate of the former approach depends

on the existence of known vulnerabilities and patches as well as

the patching procedures in the ZoneManagementProcess. The

success of the latter approach depends on attributes related to

the SoftwareProduct (e.g., if developers have tested the

SoftwareProduct’s security using static analysis tools).

A denial-of-service attack against a SoftwareInstance can be

accomplished if the attacker has access to the SoftwareInstance’s

OperatingSystem. Network-based denial-of-service attacks can be

performed against a Service or OperatingSystem if the attacker can

connect to the Service or OperatingSystem. Such attacks can also be

conducted against a DataFlow if the attacker can accomplish

unavailability in associated clients, servers, or mediating

NetworkZones.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

219

5.3 Attack-path generation and

assessment

An attack path is an ordered set of attack steps. Because the

causal dependencies are expressed in CySeMoL’s PRM,

producing an exhaustive list of all attack paths that should be

assessed is straightforward as long as the maximum number of

steps is specified.

For each identified attack path, the corresponding Bayesian

network is created and the success probabilities for all included

attack steps are calculated. The attack steps in an identified

attack path will be influenced by the attack steps in the path, the

attack steps not in the path, and countermeasures in the system

architecture. Attack steps not in the path are assigned a success

probability of zero (because these steps are not attempted). All

other attribute values are calculated as the PRM prescribes.

6 Verification and

Validation
CySeMoL can be viewed as an expert system that assesses attack

paths in a system architecture and estimates the probability that

different attack paths can be traversed by a professional

penetration tester within one week. The correctness and

accuracy of this estimate is essential for the practical utility of

CySeMoL. This section describes the verification and validation

of CySeMoL based on the terminology and recommendations of

[59].

6.1 Verification

Verification concerns the consistency, completeness, and

correctness of the software implementation of the expert system

[59]. A verification procedure can either be domain dependent

and check for anomalies in the system using meta-knowledge on

what is typical in the domain, or the verification procedure can

be domain independent and look for general anomalies and

errors in the implementation [59].

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

220

Domain-independent verification has been performed through

inspections of the output produced by the tool. The result

produced for both fictive test cases and real architectures has

been inspected. These checks ensured that all attack paths that

should be created by the model are present in the output and

that the model does not contain redundant attack paths. The

checks also verified that changes to a system’s architecture

produce the results prescribed by the theory in the model.

Domain-independent verification has focused on inspecting

whether the PRM implementation is consistent (e.g., in naming

attributes), complete (i.e., that all attribute parents are included),

has the correct weights (i.e., the conditional probabilities), and

infers data correctly (i.e., attack-generation procedure).

CySeMoL is implemented as an extension to the Enterprise

Architecture Analysis Tool (EAAT) [60]. EAAT implements

PRM-inference with the SMILE library used in Genie [61]. Thus,

the probabilistic inference mechanism has been verified in other

projects.

6.2 Validation

An expert system’s validity should be assessed in relation to a

criterion [59]. CySeMoL has been validated using the criterion

that CySeMoL should have expertise similar to that of a security

expert.

Validity tests can be performed on a component level to validate

pieces of the expert system or on a system level to validate the

full expert system against the criterion. CySeMoL has been

validated on both levels.

On a component level, CySeMoL has been validated by domain

experts in interviews and surveys. As described in section 4,

these experts have validated the dependencies in the model and

the prioritizations. In other words, the experts have validated the

qualitative part of the underlying theory. The quantitative part of

the theory has been validated on a component level in the

studies from which the theory is developed. CySeMoL’s theory is

drawn from the experts directly or from published empirical

studies in the domain. Thus, further tests on a component level

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

221

of the quantitative model’s validity by experts would be

redundant.

To test the validity of CySeMoL on a system level, a Turing test

was performed. Turing tests are particularly useful when the

answers to test cases are unknown (or costly to determine) and it

cannot be assumed that a particular domain expert is correct

[59]. The Turing test was designed to validate the attack paths

and estimates against the criterion, i.e., that CySeMoL performs

as a domain expert. Turing tests of expert systems have several

advantages over other tests [59]. However, no standards have

been established for how the Turing tests should be designed.

The test of CySeMoL was similar to the tests described in [68]

and [71]. Two pools of human experts are used: one that

produces assessments of the same type as the expert system and

one that rates the first pool’s assessments and the expert

system’s assessments based on how reasonable the assessments

are. The test’s design is described below.

Three system architectures were presented to five domain

experts experienced in penetration testing. The system

architectures were depicted in a graphical format together with

tables showing attributes of objects in the architecture during

interviews lasting one hour. The graphical drawings and tables

contained the information prescribed by CySeMoL’s metamodel

(cf. section 5.1). The five domain experts were asked to reason

about ways that three different attack goals could be reached in

the system architecture. The experts were asked to focus on the

attacks with a relatively high probability of success, i.e., to

disregard attacks that are unlikely to succeed. The resulting

attack scenarios contained a brief description of the attack and

estimates of the probability that a professional penetration tester

would succeed with the included attack steps within one week.

During the hour-long interviews, the experts produced one to

three attack paths or solutions for each of the nine cases

presented.

To limit the time required to evaluate these solutions, a subset of

the five experts’ solutions was used in the Turing test. One

solution from each expert was randomly selected for each of the

nine cases. The same principle was applied when solutions from

CySeMoL were selected: one solution was randomly selected

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

222

from the three solutions with the highest probability of success.

Thus, solutions to nine cases from six experts were used. One of

these experts was CySeMoL. To disguise the sources of the

attack scenarios, the scenarios were described using the same

language and abstraction level. In addition, all probabilities were

rounded to the nearest percentile, which is a factor of 5 %

because this resolution was used by most of the experts.

The database of 54 solutions was then presented in randomized

order in a questionnaire to two domain experts. Using a five-

point scale, the experts were asked to say if they agreed with the

statement "this assessment is reasonable and correct”. On this

scale, one means that the evaluator completely disagrees with the

statement. Five means that the evaluator completely agrees with

the statement.

The sample size prohibits drawing reliable statistical conclusions

from this test. The median score that the evaluators gave the

experts and CySeMoL attack scenarios is shown in Table 2. The

summary statistics indicate that the reasonableness of

CySeMoL’s assessments is comparable to that of the assessments

of the domain experts. In mean score, CySeMoL ranked fourth

in a tie with expert 2. In median score, CySeMoL ranked fifth.

Table 2. Results from the Turing test

 Evaluator 1 Evaluator 2 Mean Median

Expert 1 [2,4,3,2,2,2,5,4,3] [4,4,3,4,4,2,4,4,4] 3.3 4

Expert 2 [4,4,2,2,4,2,3,2,1] [4,4,3,3,4,2,2,4,3] 2.8 3

Expert 3 [2,4,3,4,3,3,3,4,3] [4,2,4,5,3,4,2,4,3] 3.3 3

Expert 4 [4,1,4,2,2,3,4,4,4] [4,2,4,3,3,3,3,4,3] 3.2 3

Expert 5 [2,2,2,1,1,1,2,2,2] [2,2,2,2,2,2,2,2,2] 1.8 2

CySeMoL [2,2,3,1,2,2,3,3,2] [5,5,4,3,4,2,1,4,2] 2.8 2.5

Novice 1 [2,4,3,1,2,2,2,3,2] [2,3,2,2,2,2,2,2,2] 2.2 2

Novice 2 [1,2,4,1,2,2,2,1,1] [3,3,3,4,2,2,3,2,2] 2.2 2

Novice 3 [4,2,2,4,4,4,3,2,1] [2,2,2,3,3,2,2,2,1] 2.5 2

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

223

Considerable variation exists between the evaluators’ scores. A

potential concern is that the scoring is arbitrary, i.e., that the

experts are unable to distinguish a reasonable solution from an

unreasonable one. To test the discriminatory ability of the

evaluators, they were requested to evaluate the solutions of three

IT security novices. These novices had more than five years of

experience in information technology but without a focus on

security matters. The novices’ solutions were elicited the same

way as the experts’ solutions were elicited and their solutions

were presented in the same format to the evaluators. The

evaluators did not know that these solutions were produced by

novices.

As shown in Table 2, the novices score better individually than

one expert. However, the novices receive low median and mean

scores compared with the experts overall, suggesting that the

evaluators can discriminate reasonable solutions from less

reasonable.

6.3 Applicability and usability

To apply CySeMoL, the user must model the system architecture

according to the metamodel depicted in Figure 1. However, the

user is not required to input all the information in the

metamodel. In particular, the user does not need to input the

attributes included in the lower box of the classes (the attack

steps). Thus, the user is required to model concepts such as

network zone, data flow, and software installation and assign

values to attributes that determine whether countermeasures

such as DNSSEC and non-executable memory are functioning.

However, the user is not required to ascertain whether attacks

succeed. In addition, for a number of attributes, the PRM can

estimate values for the attributes in the upper tile. For example,

the presence of unpatched publicly known vulnerabilities in

installed software can be estimated based on the product’s

attributes and the presence of automated patching procedures.

The usability of this tool has been assessed in [63]. Areas for

improvement in graphical attractiveness and the automated

support for time-demanding tasks are identified in [63].

However, users without security expertise can comprehend the

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

224

concepts used to model systems with CySeMoL when the textual

definition of the concepts is presented.

CySeMoL has also been evaluated with respect to usability in

three case studies that analyzed the security of system

architectures. The case studies focused on the following: (1) the

control center and adjacent environments of one of Sweden’s

largest electrical power utilities, (2) the electrical substations and

remote communication of one of Sweden’s largest power

systems, and (3) reference architectures for one of the world’s

most common electrical-power management systems. An

excerpt from an instance model with one assessed attack path is

depicted in Figure 2

The results of these three CySeMoL applications were

appreciated by the system owners, and previously unknown

security issues were identified in all three studies. However, the

potential for improvement in data collection and the

visualization of assessment results was identified. Meanwhile,

data-collection support has been implemented (see [64]).

DE 400

DevelopUnpatchableExploitForHighSeverityVuln T=2%

GetBinaryCode T=3%

GetProductInformation T=3%

CheckedWithStaticCodeAnalysis T=NO

HasBeenScrutinized T=NO

OnlyUsesSafeLanguages T=NO

SourceCodeClosed T=YES

BinaryCodeSecret T=NO

Windows 2007

OperatingSystem

AccessFromOtherZone T=YES

Engineering server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Access T=1%

AccessFromOtherZone T=1%

Application server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Engineering database

Service

ConnectToFromOtherZone T=3%

FindHighSeverityVulnerability T=2%

ExecutionOfArbitaryCodeFromOtherZone T=1%

OperatingSystem

Engineering data

Data Flow

ProduceRequest T=3%

IIS

SoftwareProduct

DevelopPatchableExploitForHighSeverityVuln T=33%

ProbeProduct T=33%

Internet

NetworkZone

Internet Perimeter

NetworkInterface

Zone

Office network

NetworkZone

FindUnknownEntryPoint T=33%

ObtainOwnAddress T=33%

UntrustedZone TrustedZone

Web server

Service

ConnectToFromSameZone T=33%

FindHighSeverityVulnerability T=13%

ExecutionOfArbitaryCodeFromSameZone T=3%

OperatingSystem

Office managent procedures

ZoneManagementProcess

RegularLogReviews T=NO

RegularSecurityAudits T=YES

FormalChangeManagentProcess T=NO

AutomatedPatchingProcedures T=NO

ManagementProcess

Access T=3%

AccessFromSameZone T=3%

Client

Product

Server

Control center

NetworkZone

Office to Control center

NetworkInterface
UntrustedZone

TrustedZone

Product

Zone

Allow

1

3

4

8

9

10

11

13

17

19

Cisco

Firewall

Functioning T=46%

Firewall
Firewall

12

12

18

HasAllHighSeverityPatches T=61%

ObtainOwnAddress T=100% 2

BinaryCodeSecret T=NO

HasNoPublicPatchableHighSeverityVuln T=NO

5

6

7

14

16

15

Figure 2. An excerpt from an instance model of 19-step

attack path together with the probabilities that each step

along this path will be reached (T=True). The links in the

attack path are the enumerated bold arrows.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

225

7 Summary and Future

work
CySeMoL is a modeling language coupled to an inference engine

for analyzing the security of enterprise system architectures. The

inference engine produces attack paths from one attack step to

another. For these attack paths, the inference engine estimates

the probability that the attack can be accomplished by a

professional penetration tester within one week using publicly

available tools.

CySeMoL has been implemented in an existing tool [60] and

validated on the component and system levels. On the

component level, the theory specified in the dependencies is

drawn from empirical studies in domain security and domain

experts. On the system level, a Turing test suggests that the

reasonableness of assessments produced by CySeMoL compares

with that of a security expert and that both CySeMoL and the

experts are more reasonable than security novices. These results

suggest that CySeMoL would be useful where no security expert

is available.

These results are promising. They suggest that assembling the

body of system-security knowledge in a tool that can automate

the assessments produced by experts in the field is feasible.

Further work can be directed towards increasing CySeMoL’s

scope, refining and testing the model’s accuracy, and maintaining

and updating the theory.

When it comes to the scope, CySeMoL has been developed to

support decision making related to the security of industrial

control systems. This design focus has delimited the attacks that

are covered by CySeMoL. Particularly, attacks on confidentiality

are not well covered by CySeMoL because confidentiality is of

lesser importance in industrial-control systems than in many

other information systems. Further work is required if CySeMoL

is to cover such attacks in a comprehensive manner. Effort can

also be applied in modeling how attackers behave (i.e.,

determining which attacks attackers will attempt) and the

consequences of successful attacks (i.e., to assess expected

losses).

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

226

When it comes to accuracy, further tests are required to assess

CySeMoL’s accuracy with confidence. These tests can be on a

component level and test a few probabilities or on system level

and test the attack paths predicted for system architectures.

Realization values can be sought in empirical tests, e.g., in

conjunction with security tests or security exercises and

competitions. Research can also be focused on refining the

model and improving CySeMoL’s accuracy. CySeMoL has been

designed to produce assessments at a reasonable cost. In other

words, it should not be overly costly to model a system-of-

systems using CySeMoL. Work that refines the theory of

CySeMoL by adding more detail to the metamodel to improve

accuracy should take the cost of using these additions into

consideration.

The threat environment and the countermeasures used at

enterprises change over time. These changes will decrease

CySeMoL’s accuracy and value unless the theory is maintained

and updated. As discussed in [65], some changes have a

fundamental effect on the security domain. For example, when

operating systems with containing new countermeasures become

widely adopted. When fundamental changes occur, they are

hopefully easy to identify along with the components of the

theory they affect.

Other changes have limited impact on the overall threat

environment or IT-landscape of enterprises. CySeMoL covers

the most frequent of these changes. For instance, CySeMoL can

detect the discovery of new vulnerabilities in a software product.

Smaller changes that are not covered by CySeMoL can be

problematic to detect and adjust the theory for. Regular reviews

of the theory (e.g., annual Turing tests) will be required to

identify such gradual evolutions of the threat environment and

the IT landscape. In any case, the theory will require ongoing

study to preserve its accuracy

8 References
[1] T. Sommestad, M. Ekstedt, and P. Johnson, “A Probabilistic

Relational Model for Security Risk Analysis,” Computers &
Security, 2010.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

227

[2] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar,
“Probabilistic Relational Models,” in Introduction to Statistical
Relational Learning, L. Getoor and B. Taskar, Eds. MIT Press,
2007, pp. 129-175.

[3] V. Verendel, “Quantified security is a weak hypothesis: a
critical survey of results and assumptions,” New Security
Paradigms Workshop, 2009.

[4] IEEE/IEC, “Information technology -- Security techniques --
Information security management measurements, ISO/IEC
27004,” Geneva, Switzerland, 2009.

[5] M. Swanson, N. Bartol, J. Sabato, J. Hash, and Laurie Graffo,
“Security Metrics Guide for Information Technology
Systems,” NIST Special Publications, vol. 800, no. 55, 2003.

[6] B. Schneier, “Attack trees: Modeling security threats,” Dr.
Dobb’s Journal, 1999.

[7] S. Bistarelli, F. Fioravanti., and P. Peretti., “Defense trees for
economic evaluation of security investments,” 2006, pp. 416-
423.

[8] L. Piètre-Cambacédès and M. Bouissou, “Beyond Attack
Trees: Dynamic Security Modeling with Boolean Logic Driven
Markov Processes (BDMP),” 2010 European Dependable
Computing Conference, pp. 199-208, 2010.

[9] M. S. Lund, B. Solhaug, and K. Stolen, Model-driven risk analysis:
the CORAS approach. Springer Verlag, 2011.

[10] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp, “A
natural extension of tropos methodology for modelling
security,” in the Proceedings of the Agent Oriented Methodologies
Workshop (OOPSLA 2002), 2002.

[11] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin,
“Quantitative Assessment of Enterprise Security System,”
2008 Third International Conference on Availability, Reliability and
Security, pp. 921-928, Mar. 2008.

[12] H. Pardue, J. Landry, and A. Yasinsac, “A risk assessment
model for voting systems using threat trees and monte carlo
simulation,” in Requirements Engineering for e-Voting Systems (RE-
VOTE), 2009 First International Workshop on, 2010, pp. 55–60.

[13] H. Pardue, J. P. Landry, and A. Yasinsac, “E-Voting Risk
Assessment,” International Journal of Information Security and
Privacy, vol. 5, no. 3, pp. 19-35, 2011.

[14] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide
to the Common Vulnerability Scoring System (CVSS), Version
2.0, Forum of Incident Response and Security Teams.” 2007.

[15] M. McQueen, W. Boyer, M. Flynn, and G. Beitel, “Time-to-
compromise model for cyber risk reduction estimation,”
Quality of Protection, 2006.

[16] E. Johansson, “Assessment of Enterprise Information
Security–How to make it Credible and efficient,” KTH - The
Royal Insitute of Technology, 2005.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

228

[17] T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, and CG, “A
Taxonomy for Comparing Attack-Graph Approaches,”
netsq.com, pp. 1-14.

[18] S. Roschke, F. Cheng, R. Schuppenies, and C. Meinel,
“Towards Unifying Vulnerability Information for Attack
Graph Construction,” in Proceedings of the 12th International
Conference on Information Security, 2009, p. 233.

[19] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-
attack graph generation tool,” in Proceedings DARPA Information
Survivability Conference and Exposition II. DISCEX’01, 2000, pp.
307-321.

[20] O. M. Sheyner, “Scenario graphs and attack graphs,” Carnegie
Mellon University, 2004.

[21] R. Lippmann, “Netspa: A network security planning
architecture,” Massachusetts Institute of Technology, 2002.

[22] R. Lippmann et al., “Validating and restoring defense in depth
using attack graphs,” in MILCOM, 2006, p. 10 pp. -.

[23] J. Homer, K. Manhattan, X. Ou, and D. Schmidt, “A Sound
and Practical Approach to Quantifying Security Risk in
Enterprise Networks,” Kansas, 2010.

[24] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K.
Prole, Advances in Topological Vulnerability Analysis. Washington,
DC: IEEE, 2009, pp. 124-129.

[25] R. P. Lippmann and L. L. C. Williams, “GARNET: a
Graphical Attack graph and Reachability Network Evaluation
Tool,” in Visualization for Computer Security, K. Prole, Ed.
Heidelberg-Berlin: Springer Berlin / Heidelberg, 2008, pp. 44-
59.

[26] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer,
“Visualizing attack graphs, reachability, and trust relationships
with NAVIGATOR,” in Proceedings of the Seventh International
Symposium on Visualization for Cyber Security, 2010, pp. 22–33.

[27] R. Sawilla and X. Ou, “Identifying critical attack assets in
dependency attack graphs,” in 13th European Symposium on
Research in Computer Security (ESORICS), 2008, no. 0716665, pp.
18-34.

[28] H. Holm, T. Sommestad, J. Almroth, and M. Persson, “A
quantitative evaluation of vulnerability scanning,” Information
Management & Computer Security, vol. 19, no. 4, 2011.

[29] K. Stouffer, J. Falco, and K. Kent, “Guide to Industrial
Control Systems (ICS) Security Recommendations of the
National Institute of Standards and Technology,” Nist Special
Publication, vol. 800, no. 82, 2008.

[30] K. Ingols, M. Chu, R. Lippmann, and S. Webster, “Modeling
Modern Network Attacks and Countermeasures Using Attack
Graphs,” in Annual Computer Security Applications Conference,
2009, pp. 117-126.

[31] F. . Jensen, Bayesian Networks and Decision Graphs. Secaucus, NJ,
USA.: Springer New York, 2001.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

229

[32] R. J. Anderson, Security Engineering: A guide to building dependable
distributed systems. New York, NY, USA: Wiley Publishing, 2008.

[33] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and
DDoS defense mechanisms,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 2, p. 39, Apr. 2004.

[34] The MITRE Corporation, “The Common Attack Pattern
Enumeration and Classification,” (website), 2011. [Online].
Available: http://capec.mitre.org/.

[35] J. Wilander and M. Kamkar, “A comparison of publicly
available tools for dynamic buffer overflow prevention,” in
Proceedings of the 10th Network and Distributed System Security
Symposium, 2003, pp. 149–162.

[36] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer

Overflows : Attacks and Defenses for the Vulnerability of the
Decade,” in Foundations of Intrusion Tolerant Systems, 2003
[Organically Assured and Survivable Information Systems], 2003, pp.
227-237.

[37] N. Frykholm, “Countermeasures against buffer overflow
attacks,” RSA Tech Note, pp. 1-9, 2000.

[38] I. Simon, “A comparative analysis of methods of defense
against buffer overflow attacks,” Web address: http://www. mcs.
csuhayward. edu/\~ simon/security/boflo. html, pp. 1-16, 2001.

[39] Y. Younan, “Efficient countermeasures for software
vulnerabilities due to memory management errors,” Katholieke
Universiteit Leuven, 2008.

[40] S. Marechal, “Advances in password cracking,” Journal in
Computer Virology, vol. 4, no. 1, pp. 73-81, 2007.

[41] M. Dell’ Amico, P. Michiardi, and Y. Roudier, “Password
Strength: An Empirical Analysis,” 2010 Proceedings IEEE
INFOCOM, pp. 1-9, Mar. 2010.

[42] J. Cazier, “Password security: An empirical investigation into e-
commerce passwords and their crack times,” Information Security
Journal: A Global, 2006.

[43] “Free Rainbow Tables,” 2011. [Online]. Available:
http://www.freerainbowtables.com/. [Accessed: 01-Apr-
2011].

[44] J. McHugh, “Testing Intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory,” ACM
Transactions on Information and System Security, vol. 3, no. 4, pp.
262-294, Nov. 2000.

[45] A. Ozment, “Improving vulnerability discovery models,” in
Proceedings of the 2007 ACM workshop on Quality of protection, 2007,
pp. 6–11.

[46] T. Sommestad, H. Holm, and M. Ekstedt, “Effort estimates
for vulnerability discovery projects,” in HICSS’12: Proceedings of
the 45th Hawaii International Conference on System Sciences, 2012.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

230

[47] T. Sommestad, H. Holm, and M. Ekstedt, “Estimates of
success rates of remote arbitrary code execution attacks,”
Information Management & Computer Security, vol. (Accepted .

[48] T. Sommestad, H. Holm, and M. Ekstedt, “Estimates of
success rates of Denial-of-Service attacks,” in TrustCom 2011,
2011, no. 1.

[49] T. Sommestad, H. Holm, M. Ekstedt, and N. Honeth,
“Quantifying the effectiveness of intrusion detection systems
in operation through domain experts,” 2012.

[50] R. Cooke, “TU Delft expert judgment data base,” Reliability
Engineering & System Safety, vol. 93, no. 5, pp. 657-674, May
2008.

[51] T. Sommestad, “Exploiting network configuration mistakes:
practitioners self-assessed success rate,” Stockholm, Sweden,
2011.

[52] T. Sommestad, M. Ekstedt, H. Holm, and M. Afzal, “Security
mistakes in information system deployment projects,”
Information Management and Computer Security, vol. 19, no. 2, 2011.

[53] A. Wool, “A quantitative study of firewall configuration
errors,” Computer, pp. 62–67, 2004.

[54] J. R. Jacobs, “Measuring the Effectiveness of the USB Flash
Drive as a Vector for Social Engineering Attacks on
Commercial and Residential Computer Systems,” Embry
Riddle Aeronautical University, 2011.

[55] S. Stasiukonis, “Social engineering, the USB way,” Dark
Reading, vol. 7, 2006.

[56] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer,
“Social phishing,” Communications of the ACM, vol. 50, no. 10,
pp. 94–100, Mar. 2007.

[57] R. Dodge and A. Ferguson, “Using Phishing for User Email
Security Awareness,” in Security and Privacy in Dynamic
Environments, vol. 201, S. Fischer-Hübner, K. Rannenberg, L.
Yngström, and S. Lindskog, Eds. Springer Boston, 2006, pp.
454-459.

[58] M. Buschle, “KTH | The Enterprise Architecture Tool,” 2011.
[Online]. Available:
http://www.kth.se/ees/omskolan/organisation/avdelningar/i
cs/research/eat. [Accessed: 28-Sep-2011].

[59] R. M. O’Keefe and D. E. O’Leary, “Expert system verification
and validation: a survey and tutorial,” Artificial Intelligence Review,
vol. 7, no. 1, pp. 3-42, Feb. 1993.

[60] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T.
Sommestad, “A Tool for Enterprise Architecture Analysis
using the PRM formalism,” in Proc. CAiSE Forum 2010, 2010.

[61] M. J. Druzdzel, “GeNIe: A development environment for
graphical decision-analytic models,” in Proceedings of the 1999
Annual Symposium of the American Medical Informatics Association
(AMIA-1999), 1999, p. 1206.

Paper F: The Cyber Security Modeling Language: A Tool for

Vulnerability Assessments of Enterprise System Architectures

231

[62] R. Agarwal, R. Kannan, and M. Tanniru, “Formal validation of
a knowledge-based system using a variation of the Turing
test,” Expert Systems with Applications, vol. 6, no. 2, pp. 181-192,
Apr. 1993.

[63] M. Österlind, “Validering av vektyget Enterprise Architecture
Tool,” Royal Institute of Technology (KTH), 2011.

[64] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K.
Shahzad, “A Tool for automatic Enterprise Architecture
modeling,” in CAISE’11 Forum, 2011.

[65] D. Ahmad, “The Contemporary Software Security Landscape,”
IEEE Security & Privacy Magazine, vol. 5, no. 3, pp. 75-77, May
2007.

