SVED: Scanning, Vulnerabilities, Exploits and Detection

Hannes Holm
Swedish Defence Research Agency (FOI),
Olaus Magnus vig 42,
Linkoping, Sweden
Email: hannes.holm@foi.se

Abstract—This paper presents the Scanning, Vulnerabilities,
Exploits and Detection tool (SVED). SVED facilitates reliable
and repeatable cyber security experiments by providing a
means to design, execute and log malicious actions, such as
software exploits, as well the alerts provided by intrusion
detection systems. Due to its distributed architecture, it is
able to support large experiments with thousands of attackers,
sensors and targets. SVED is automatically updated with threat
intelligence information from various services.

1. Introduction

Cyber attacks are frequent and a serious problem for
organizations and individuals. Numerous models, tools and
metrics have been proposed for the purpose of measuring
and managing cyber security. In particular, there are a wide
range of approaches for assessing cyber vulnerabilities (e.g.,
using attack graphs, as in MulVAL [1] or CySeMoL [2], [3])
and detecting malicious behavior (e.g., by mapping alerts to
an attack model, as in SnIPS [4] and the solution in [5]).

Unfortunately, few of these approaches have been exam-
ined using empirical data. For example, to this date, there
are few published empirical tests of measurement methods
[6], and most tests of solutions for detecting malicious
behavior is performed on a criticized dataset produced in
the late 1990°s [7]. This is primarily due to the difficulty for
researchers to obtain observational data from live networks
and systems. Such data are typically deemed too sensitive
for public research. Furthermore, because it is next to im-
possible to completely distinguish malicious activity from
benign activity in an operational network, such data do not
offer a ground truth to run security tests against.

The dire need for more tests is illustrated by the disap-
pointing results of the few studies that examine the relia-
bility of different cyber security models and metrics. For
example, [8] found attack graphs inaccurrate; [9] found
that system-level vulnerability metrics show little correlation
with the actual time required to compromise a system; [10]
found little correlation between the severity of a software
vulnerability and the actual exploitation of it in practice.

These issues have been acknowledged by the scien-
tific community. For example, a roadmap for experimental

Teodor Sommestad
Swedish Defence Research Agency (FOI),
Olaus Magnus vig 42,
Linkoping, Sweden
Email: teodor.sommestad @foi.se

cybersecurity research is presented in [11]. This roadmap
stress, among other things, that the community needs shared,
validated models and tools that help researchers to rapidly
design meaningful experiments and test environments.

Fortunately, recent advances in virtualization technology
and the advent of large-scale laboratory computer environ-
ments, often called cyber ranges, offer alternative means
of obtaining empirical data and conducting experiments.
In cyber ranges, systems and software can be configured
similarly to the real world, and attacks can be carried out
in a controlled manner without influencing any operational
business. Cyber ranges can therefore be used to generate
data suitable for testing both methods for vulnerability as-
sessment and methods for detecting malicious behavior. This
is demonstrated by a number of published papers that use
data generated in cyber ranges, for instance, [8], [9], [12].

However, as the data in cyber ranges is generated syn-
thetically, its characteristics may be different from that ob-
served in an operational environment. This validity problem
can be decomposed into the issue of valid cyber environ-
ments (e.g., software versions and network configurations),
valid background traffic (e.g., users’ web browsing habits)
and valid cyber attacks (e.g., software exploits and pay-
loads). Advances are needed in all these areas to enforce
ecological validity. This paper focuses on the generation of
cyber attacks.

A common means of performing security experiments in
cyber ranges is to use red teams who attempt to compromise
assets (see e.g., [13]). While red teams offer a degree of
realism in the sense that their attacks are diverse and intel-
ligently chosen, it is generally expensive to involve them.
Also, the authors’ experience show that red team members
are more interested in compromising assets than recording
their actions. Thus, the resulting data may be unreliable
and the corresponding experiments difficult to reproduce.
As a consequence, researchers and practitioners turn to
different methods that aim to simulate attacker actions in
a reproducible and reliable manner.

This paper presents the Scanning, Vulnerabilities, Ex-
ploits and Detection tool (SVED). SVED enables automated
or manual low-effort design of attack plans. It also enables
distributed automatic execution of sequences of attack steps
as well as recording all the activity by carried out actions.

Finally, SVED has interfaces for automatically interacting
with popular intrusion detection tools such as Snort in order
to get their alerts in real-time.

2. Related work

As previously noted, attacks in an experiment can be
injected manually, e.g., by a red team. However, from an
experimental perspective, this has obvious limitations with
respect to scalability, reliability, replicability and reuse. Such
issues are avoided if attacks are scripted so that they are
automatically executed by a computer. This section offers an
overview of research on automating attacks for the purpose
of security experimentation.

ARENA [14] and RINSE [15] are two platforms that
support cyber security experimentation. Their descriptions
suggest that they support injections of various types of
attacks, allow experiments of scale, specify experiments in a
way that makes them replicable and allow both extensions
and reuse. However, similar to many other cyber security
testbeds (e.g., [16], [17]), both ARENA and RINSE are
based on syntehetical simulations of computer networks,
and not real systems. This may cause problems with re-
gards to fidelity and realism in cyber security testing as
many software vulnerabilities (e.g., buffer overruns) exists
because of poorly implemented treatment of system calls.
To accurately predict the effects of an attack that targets
such a vulnerability, there is a need to include the actual
sofware stack.

Experimental platforms based on virtualization tech-
nology (e.g., VirtualBox, VMware or Emulab) suffer less
from the issue with realism as they allow the execution of
the entire software stack with the exception of hardware
drivers. In combination with offensive tools, virtualized
machines allow realistic testing of most types of cyber
security attributes. Available offensive tools include, but are
not limited to, Metasploit, w3af, Immunity Canvas, Cain
and Abel, and Core Impact. Some of these tools integrate
vulnerability scanning capabilities with automated exploit
capabilities. This supports component testing and simple
injects in cyber security exercises. However, many cyber
security attacks involve intelligently chosen sequences of at-
tack steps, e.g., when obtained privileges are used to access
additional resources. To the authors’ knowledge, none of the
available offensive tools support automation of this sort, nor
do they offer frameworks for creating complex attack plans
involving multiple tools. Also, as cyber attacks attempt to
alter the state of the target system, valid consecutive tests
of the same system requires restoring it to a previously
known stable state (e.g., using virtual snapshots) before the
execution of an exploit. To our knowledge, none of the
current tools have such functionality.

There are experimental frameworks that integrate offen-
sive tools with cyber range environments to allow realistic
and controlled experimentation. DCAFE [18] is such an
experimental framework. In DCAFE software agents are
deployed on virtual machines and instrumented to run cy-
ber attacks as well as collect data. However, DCAFE is

currently only available as an early prototype that seems
to lack the extensibility one would expect from a security
experimental testbed. For instance, it only supports Windows
7 victim machines and Kali Linux attacker machines. A
similar platform is desribed in [19]. This platform has
the purpose of producing datasets for intrusion detection
system testing and the tool Metasploit is used to execute
attacks against machines according to predefined attack
plans. While Metasploit contains a wide range of actions
and has APIs to several significant third-party tools (e.g.,
nmap and OpenVAS), far from all relevant kinds of actions
are covered by it. Also, [19] is only able to model server-
side attacks, which is an issue as many attacks today are
conducted against clients. Nevertheless, both DCAFE and
the platform presented by [19] illustrate the potential for
cyber security experimentation where offensive tools are
integrated into cyber ranges. The present work is one step
further in that direction.

3. Design and implementation

This chapter describes the design and implementation
of the Scanning, Vulnerabilities, Exploits and Detection tool
(SVED). SVED consists of five main components: threat in-
telligence, a designer, an executioner, attacker/sensor agents
and a logger. The relations between these components can be
seen in Figure 1. These components enable creating well-
designed attack plans (Section 3.2), executing these plans
(Section 3.4 - 3.5) and logging the result from experiments
(Section 3.6). The entire codebase, not counting third-party
libraries, consists of 6400 lines of Python code and 6100
lines of Javascript/HTML code.

Planning, execution and logging

1DesignerF>1 Executioner h Logger
[GUI / REST API]
Alerts Commands Threat intelligence
Sensor system | Attack system | Updater |
[S¢ Sensor system \ [A Attack system ‘ U| Updater ‘
Sensor system S Attack system s€ U| Updater

iz >l

s€ [Sq
E}Sensor‘ }Sensor‘

service| | service

Attack ‘ Attack
servnce } service

s Update | Update
service || service

Figure 1: An overview of the architecture of SVED.

SVED is currently used in a cyber range called Cy-
ber Range and Training Environment (CRATE). CRATE is
briefly described in Section 3.1.

3.1. Cyber Range and Training Environment

CRATE is a cyber range built and maintained by the
Swedish Defence Research Agency (FOI). It has been used
for a number of research studies [20]. This section only
provides a brief description of CRATE and the interested

reader is referred to [20] for more detailed description.
Physically, CRATE consist of approximately 750 servers,
a number of switches and various auxiliary equipment (e.g.,
for remote access). During an experiment these servers
are instrumented with between five and twenty VirtualBox
machines of various types. Instrumentation is straightfor-
ward for any type of operating system and application soft-
ware that VirtualBox can handle. In addition to the typical
enterprise software, simplified versions of social network
services, industrial control systems and search engines are
available.

Instrumentation is either scripted or managed using a
web-based graphical user interface called CRATEWeb. This
web interface allows the researcher to configure operating
systems, application software, firewall configurations, net-
work topologies, users, windows domains, and more. A set
of scripts then deploy virtual machines that match the design
to the server park.

Benign user activity can be scripted through bash com-
mands and a Windows-based automation tool called AutolT.
These “bots” use historical user activity from operational
systems as a basis for their behaviour.

3.2. Threat intelligence

SVED is updated with general and specific informa-
tion relevant to cyber security experiments in the cyber
range. General information include vulnerabilities (from the
US National Vulnerability Database (NVD)), exploits and
vulnerable software (from the Exploit Database), network
intrusion detection signatures (from Snort Talos and Emerg-
ing Threats rule sets), anti-malware signatures (from the
Symantec Security Response) and incidents (from the Vo-
cabulary for Event Recording and Incident Sharing (VERIS)
database). Specific information about assets in the cyber
range (such as network interfaces and user accounts) is
provided by CRATEWeb (see Section 3.1). This information
is enriched by another application called AutoVAS which
autonomously runs parallell authenticated automated vulner-
ability scans using OpenVAS on systems in the cyber range.
SVED polls data from these services periodically with the
aid of a time delta that enables extracting revised, new or
removed data.

This information fascilitate better manual as well as
automated designs of attack graphs (see section 3.3). We
are currently working on probabilistic attack designs that
employ threat intelligence information to more realistically
simulate attacker behaviour (see section 5).

3.3. Designer

The designer is used to create attack graphs. This can be
accomplished either through a web-based GUI or scripted
through a REST API. The user interface is illustrated in
Figure 2. Two canvases constitute the majority of the view.

The left canvas describes assets of interest for an exper-
iment. These assets are either targets, attackers or sensors.
Targets are subjected to malicious actions from attackers,

e.g., a Windows-based workstation or a Debian-based fire-
wall. Attackers have services that can be used to inject
malicious commands during an experiment. Several types
of services are currently supported, such as Metasploit,
OpenVAS and a general service that can facilitate a range
of commands (e.g., flooding attacks, cracking password
hashes, sending email or running VirtualBox commands).
The framework has been built to be easily extended with
new services and commands. For instance, adding a new
command to the general service only requires a few lines of
code. Sensors have functionality to detect malicious activity
carried out against targets. The framework currently only
supports Snort. However, as for attack services, the frame-
work was built to be easily extended with new sensors.

The user loads a designated set of assets from the back-
end database by specifying which targets, attack systems
and sensors that should be included in an experiment.

The right canvas describes the defined attack steps and
their connections. SVED supports four types of actions:
reconnaissance, exploits, shellcode and auxiliary. With the
exception of auxiliary actions, these are part of most cyber
attacker behaviour models. Auxiliary actions are a kind
of “glue” that help to facilitate valid execution of actions
without generating any activity that could tamper with the
experiment result (such as intrusion alerts). Example auxil-
iary actions include restoring a target to a previous snapshot
using the VirtualBox API and querying the database of an
attack service regarding any identified vulnerabilities. Re-
connaissance actions increase the information known about
targets through, e.g., vulnerability scanning or port scanning.
Exploit actions attempt to provide unauthorized access to
targets. SVED contains functionality to execute exploits
that target both clients (e.g., Adobe Reader) and servers
(e.g., Windows SMB), where client-side attacks typically are
administrated through e-mail or directly executed on targets
using the VirtualBox APIL. Both local and remote access
vectors are supported. Shellcode actions run commands on
compromised machines, e.g., to increase persistence by dis-
abling anti-malware, to cover the tracks of the attacker, or
to extract sensitive data through FTP.

This categorization is, however, purely for usability
purposes. From an architecture/database point of view, all
action types correspond to a class called abstract action.
This “base template” of an action is defined through a list
of settings, where each setting is responsible for describing
its use. Some settings are specific (e.g., CVE-2008-4250
requires the name of the targeted SMB user name); some
settings are shared between actions in a category (e.g., scans
can either run until they are completed or until a defined
amount of time as passed); some settings are shared between
all actions. The latter includes different timers, e.g., regard-
ing start and stop. The user is required to describe the states
of some settings (e.g., the target address of a server exploit)
whereas other settings are voluntary as they have valid
default states. The user is able to filter between different
types of settings for a selected action. It is possible to define
the states of settings for multiple actions simultaneously.
Abstract actions are loaded by quering attacker systems that

System-of-systems

CHERRE Detault canvas

Security Onion

Kali Netgear WNR2000

b

Zyxel N300

«h

Windows XP

Windows 7

Kubuntu Gutsy

Disable anti-malware
g

Home Configuration Browse en

DL EN Game manager

Attack graph Options|

portscan kscannsrﬁuns(n ntep)

Windows XP attempt #1 (windows/htp/hp_nnm_getnnm data_maxage)

Attempt #Z (windows/smb/ms08_067_netapi)

C:\

Shellcode to add new user
—|

C\

Figure 2: An overview of the designer interface in SVED.

are present in an experiment design. From a user perspective,
this is done by pressing a button in the GUI. This means that
each attack service is responsible for translating all actions
in its arsenal to abstract actions upon request.

An experiment design consists of action instances,
which are unique instances of abstract actions. When an
action instance is created, it keeps a reference to its parent
abstract action and clones all settings that can be altered by
the user. There are several helper functions that reduce the
effort required to create attack graphs:

1) It is possible to query the database for attacks that
are relevant to a particular target. This is facilitated
by relating software and systems to vulnerabilities and
vulnerabilities to actions (CPEs to CVEs, and CVEs to
actions).

2) One experiment can be copied and injected into an-
other. Through this method, a user is able to create
small experiment stubs, or templates, such as a simu-
lation of a computer worm, which then can easily be
loaded into other experiments.

3) There is an automated planning algorithm that maps
exploits from a set of attack systems against a set of
targets. This planner utilizes a sub-set of the threat
intelligence data (see section 3.2) by coupling software
vulnerability information to exploits. Test validity is
enforced by a set of pre-exploit actions that first restore
the target to a known vulnerable snapshot, then verify
connectivity, and finally that the target software is in a
valid state.

Actions can be connected in three ways (see Figure 2):

« execute if successful (light grey line)
« execute if fail (light grey line with short dashes)

« always execute (dark grey line with long dashes)

Here, success and failure means different things for
different actions. For example, an exploit is successful if
a session can be obtained on the targeted system, whereas
an auxiliary action that checks whether a particular vulnera-
bility has been identified on a specific system is successful if
this condition is met. In practice this enables relating actions
using AND/OR gates of arbitrary complexity.

In both canvases, the user chooses which elements that
should be visible by coupling elements to viewspoints and
choosing which viewpoint that should be active.

3.4. Executioner

When a designated attack graph is executed (the play
button in Figure 2), the executioner first makes sure that the
logger service is running at its designated address. It then
builds the complete attack graph, where each attack step
is provided directions to the logger as well as directions
to its required attack services. Tests are then conducted
to ensure that all required attack services are operational.
If the attack graph and its dependencies are valid, the
executioner continues by checking which included sensor
services that are operational. The executioner then notifies
each operational sensor that an experiment is beginning and
which address that the logger is located at, configuring the
logger in an appropriate alert forwarding mode.

The executioner then adds all actions that do no not have
preceeding attack steps to the list of currently active attack
steps and proceeds to step through the entire attack graph,
administrating commands and reading their results. An ex-
periment is considered completed either when a user aborts

it or when all actions that could be attempted have been
attempted (which not necessarily means that all branches
in a graph have been traversed). When this is the case, all
involved sensors are notified, causing them to stop reporting
alerts to the logger. At this point, the executioner reports to
the logger that the experiment has been completed.

The user is able to view the activity of live and previous
experiments in a graphical interface.

3.5. Agents

Each attack system and sensor system has one or more
services that are used to run commands or report alerts. Each
such service is required to have functionality that enables
the service to fulfill its purpose as well as interact with
the executioner and the logger. As-is, this functionality is
enabled by a combination of Python code and third-party
code (such as the Metasploit RPC server). For a sensor
service, this functionality includes being able to act on
overall game events (e.g., start and stop) and status updates
(e.g., if the service is operational), as well as report alerts
to the logger. For an attack service, it includes acting on
overall game commands and sending status updates (both
regarding the status of the service and the status of its
currently running actions), executing commands (e.g., run
a certain exploit), as well as notify the designer regarding
the actions in its arsenal.

3.6. Logger

The logger is a server application that is responsible
for receiving and managing incoming reports from attack
steps and sensors. Its schema is inspired by IODEF, but
revised to handle the additional properties relevant from an
attackers perspective. It can easily be modified to support
other standards such as STIX, CybOX or CEF.

4. Example experiment

This chapter describes an example experiment with
SVED. The experiment is simple by design in order to
make it easily understandable. As SVED has a distributed
architecture, the performance of the executioner is next to
independent of the complexity of the attack graph. In other
words, it is possible to run experiment with thousands of
unique attackers, sensors and victims.

The example experiment consists of the systems and
attack steps presented in Figure 2. A Kali Linux 2.0 system
with a Metasploit RPC server and a utility server is used
to execute the actions against a Windows XP machine. A
Security Onion 12.04 configured with a Snort sensor service
(with the latest Emerging Threats rule set) is present to
detect attacks and report these to SVED. The attack graph
includes a portscan (scanner/portscan/tcp), a web
server attack (windows/http/hp_nnm_getnnmdata_
maxage), a shellcode that disables anti-malware protection,
a server attack against SMB (windows/smb/ms08_067_

netapi), and a shellcode that adds a new user on the
victim.

The complete result with all events is available for
download'. Of the five actions, the portscan, the SMB attack
and the second shellcode were successful; the web server
attack failed and the first shellcode was never executed. A
total of 315 events were recorded by the logger. 305 of
these events were produced by actions and 10 by alerts from
Snort (see Table 1). Three Snort alerts triggered for the SMB
attack and seven for the port scan. In other words, no alerts
were given for the web server attack or the shellcode.

While this experiment is too small and unrealistic to
draw any general conclusions regarding the effectiveness of
Snort, it serves to illustrate the use of SVED: Unlike any
experiment involving red teams, the actions would be carried
out and recorded in exactly the same way every time the
experiment is run.

Table 1: Snort alerts and their respective actions.

Time | Priority | Snort ID

Triggered by

15:41:50 2 2010935 scanner/portscan/tcp
15:41:52 2 2010936 scanner/portscan/tcp
15:42:43 2 2010937 scanner/portscan/tcp
15:43:13 2 2010938 scanner/portscan/tcp
15:43:45 2 2010939 scanner/portscan/tcp
15:43:56 2 2002910 scanner/portscan/tcp
15:43:59 2 2002911 scanner/portscan/tcp
15:46:16 3 2102465 windows/smb/ms08_067_netap
15:46:16 1 2009247 windows/smb/ms08_067_netap
15:46:16 1 2009247 windows/smb/ms08_067_netap

5. Summary and future work

This paper presented the SVED, a framework that fa-
cilitates reliable and repeatable cyber security experiments
by providing a means to plan, execute and log malicious
actions as well as intrusion detection alerts in real-time.

While SVED is a fully functional tool, there are plenty of
work left. In particular, its automated planning capabilities
are very crude. One means of enhancing its automated
planning capabilities would be to add an interface to an
attack graph tool such as MulVAL [1]. However, these kinds
of tools do not consider many aspects important to attacker
decision making [21]. In particular, they typically do not
model reconnaissance or shellcode actions. Thus, such an
implementation likely requires first extending the attack
graph tool itself. Also, as an attack graph merely contains
hypothetical adverserial actions with uncertain outcome [8],
they are not perhaps not suited for cyber security experi-
mentation.

An arguably better method would be to let the user
decide start- and end-conditions of an experiment, and then
allow the executioner to autonomously interact with victims
in the system graph in real-time with a designated amount
of initial information similar to that of a real attacker.
This would create a worm-like behaviour that is operated
and controlled by the executioner. For example, a simple

1. ftp://download.iwlab.foi.se/sved/

dynamic execution pattern could be to first run a portscan,
then a vulnerability scan, then an exploit and then pivot
from the compromised system to new locations. Each of
these actions could be connected through database queries to
examine discovered host addresses, services, vulnerabilities
and gained sessions. This method also requires implement-
ing an algorithm that is able to intelligently choose an action
whenever there are multiple options available. In practice
this requires a search algorithm believed to well reflect
an attacker profile (e.g., depth-first or breadth-first search
methods) and a function that can be used to weigh each edge
(option) according likelihood of usage. The latter could for
example be a combination of the risk of being detected by
a sensor in combination with the likelihood of success as
well as the value of success in relation to other alternatives.
Indicators regarding the exploitation aspects of such a model
are given by Hoffman [22], who propose extensions to the
Core Impact exploit planner.

A second future work is to extend SVED with the
capability to interact with more security tools that execute
and detect malicious actions. As SVED was built with
this in mind it should be a minor task to add a new tool
to its scope. New actions should however preferrably be
configured to comply with a standardized exploit framework
as this would serve to decrease the overall tool complexity. A
reasonable candidate for such a framework is the Metasploit
framework (which SVED already is complient with) due to
its wide-spread usage and regular updates. The coverage of
Metasploit is, however, limited in relation to other public
exploit databases such as Exploit DB — there are roughly
3000 modules in Metasploit and 35000 modules in Exploit
DB. Research that automatically make actions Metasploit-
compatible would thus be valuable.

Last but not least, there is a need to use SVED to
produce data that can be used by cyber security researchers
and practitioners when evaluating the effectiveness of differ-
ent metrics, methods and tools that are thought to enhance
cyber security by some means. It would be valuable to share
such results as well as their experimental designs in some
common repository.

Acknowledgments

This project has received funding from the European
Unions FP7 research and innovation programme under grant
agreement No 603993.

References

[1] X.S. Ou, S. Govindavajhala, and A. Appel, “MulVAL: A logic-based
network security analyzer,” in Proceedings of the 14th conference
on USENIX Security Symposium-Volume 14. USENIX Association,
2005, p. 8.

[2] T. Sommestad, M. Ekstedt, and H. Holm, “The Cyber Security Mod-
eling Language — A Tool for Vulnerability Assessments of Enterprise
System Architectures,” Systems Journal, IEEE, vol. 7, no. 3, pp. 363—
373, 2013.

[3] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt, “PZCySeMoL:
Predictive, Probabilistic Cyber Security Modeling Language,” IEEE
Transactions on Dependable and Secure Computing, pp. 1-1, 2014.

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. C. Sundaramurthy, L. Zomlot, and X. Ou, “Practical ids alert
correlation in the face of dynamic threats,” in Proceedings of the
International Conference on Security and Management, 2011.

X. Qin and W. Lee, “Attack plan recognition and prediction using
causal networks,” Proceedings - Annual Computer Security Applica-
tions Conference, ACSAC, pp. 370-379, 2004.

V. Verendel, “Quantified security is a weak hypothesis,” in Proceed-
ings of the 2009 workshop on New security paradigms workshop -
NSPW ’09. New York, New York, USA: ACM Press, 2009, pp.
37-49.

J. McHugh, “Testing Intrusion detection systems: a critique of the
1998 and 1999 DARPA intrusion detection system evaluations as
performed by Lincoln Laboratory,” ACM Transactions on Information
and System Security, vol. 3, no. 4, pp. 262-294, nov 2000.

T. Sommestad and F. Sandstrom, “An empirical test of the accuracy
of an attack graph analysis tool,” Information and Computer Security,
vol. 23, no. 5, pp. 516-531, nov 2015.

H. Holm, M. Ekstedt, and D. Andersson, “Empirical Analysis of
System-Level Vulnerability Metrics through Actual Attacks,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 6,
pp- 825-837, nov 2012.

L. Allodi, W. Shim, and F. Massacci, “Quantitative assessment of risk
reduction with cybercrime black market monitoring,” in Security and
Privacy Workshops (SPW), 2013 IEEE. 1EEE, 2013, pp. 165-172.

D. Balenson, L. Tinnel, and T. Benzel, “Cybersecurity Experimenta-
tion of the Future (CEF): Catalyzing a New Generation of Experi-
mental Cybersecurity Research,” SRI International, Tech. Rep., 2015.

J. Mirkovic, P. Reiher, C. Papadopoulos, A. Hussain, M. Shepard,
M. Berg, and R. Jung, “Testing a Collaborative DDoS Defense In a
Red Team/Blue Team Exercise,” IEEE Transactions on Computers,
vol. 57, no. 8, pp. 1098-1112, aug 2008.

D. Levin, “Lessons learned in using live red teams in IA experiments,”
in Proceedings of DARPA Information Survivability Conference and
Exposition, vol. 1. IEEE, 2003, pp. 110-119.

K. C. Costantini, “Development of a cyber attack simulator for
network modeling and cyber security analysis,” Ph.D. dissertation,
Rochester Institute of Technology, 2007.

M. Liljenstam, J. Liu, D. M. Nicol, Y. Yuan, G. Yan, and C. Grier,
“Rinse: the real-time immersive network simulation environment for
network security exercises (extended version),” Simulation, vol. 82,
no. 1, pp. 43-59, 2006.

A. Futoransky, F. Miranda, J. Orlicki, and C. Sarraute, “Simulating
cyber-attacks for fun and profit,” in proceedings of the 2nd interna-
tional conference on simulation tools and techniques. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009, p. 4.

M. E. Kuhl, J. Kistner, K. Costantini, and M. Sudit, “Cyber attack
modeling and simulation for network security analysis,” in Proceed-
ings of the 39th Conference on Winter Simulation: 40 years! The best
is yet to come. 1EEE Press, 2007, pp. 1180-1188.

G. Rush, D. R. Tauritz, and A. D. Kent, “Dcafe: A distributed
cyber security automation framework for experiments,” in Computer
Software and Applications Conference Workshops (COMPSACW),
2014 IEEE 38th International. 1EEE, 2014, pp. 134-139.

A. Abou El Kalam, M. Gad El Rab, and Y. Deswarte, “A model-
driven approach for experimental evaluation of intrusion detection
systems,” Security and Communication Networks, vol. 7, no. 11, pp.
1955-1973, 2014.

T. Sommestad, “Experimentation on operational cyber security in
CRATE,” in NATO STO-MP-IST-133 Specialist Meeting, Copen-
hagen, Denmark, 2015, pp. 7.1-7.12.

J. Yuen, “Automated Cyber Red Teaming,” Cyber and Electronic
Warfare Division, Defence Science and Technology Organisation,
Edinburgh South Australia, Australia, Tech. Rep., 2015.

J. Hoffmann, “Simulated penetration testing: From” dijkstra” to
turing test++".” in ICAPS, 2015, pp. 364-372.

i)

