
Effort estimates on web application vulnerability discovery

Hannes Holm

The Royal Institute of

Technology (KTH), Sweden

hannesh@ics.kth.se

Mathias Ekstedt

The Royal Institute of

Technology (KTH), Sweden

 mathiase@ics.kth.se

Teodor Sommestad

Swedish Defence Research

Agency (FOI), Sweden

teodor.sommestad@foi.se

Abstract
Web application vulnerabilities are widely

considered a serious concern. However, there are as

of yet scarce data comparing the effectiveness of

different security countermeasures or detailing the

magnitude of the security issues associated with web

applications. This paper studies the effort that is

required by a professional penetration tester to find

an input validation vulnerability in an enterprise web

application that has been developed in the presence

or absence of four security measures: (i) developer

web application security training, (ii) type-safe

API’s, (iii) black box testing tools, or (iv) static code

analyzers. The judgments of 21 experts are collected

and combined using Cooke’s classical method. The

results show that 53 hours is enough to find a

vulnerability with a certainty of 95% even though all

measures have been employed during development. If

no measure is employed 7 hours is enough to find a

vulnerability with 95% certainty.

1. Introduction

Web Applications (WA) are widely used and

often hold sensitive or important data. Attacks

against them can thus be very costly due to losses of

data integrity, confidentiality or availability. The

arguably most problematic type of WA security issue

is code injection due to poor input sanitizing. This

category of vulnerabilities includes, for example,

SQL injection (SQLi), Command Injection and cross

site scripting (XSS). Of these, SQLi is the most

critical type of WA vulnerability according to

OWASP [1] and SANS 2011 Top 25 (that rank all

known IT security vulnerabilities) [2]. Command

Injection and XSS are not far behind, being ranked

second and fourth by SANS [2]. Naturally, other WA

flaws such as Cross Site Request Forgery (CSRF) are

also bothersome.

In recent years, considerable effort has been

performed to understand and manage this problem.

For instance, organizations such as MITRE, SANS

and OWASP have developed security awareness

programs to help organizations to mitigate the issue.

However, despite these efforts a recent study [3]

shows that application developers still are unable to

implement effective countermeasures for WA

vulnerabilities.

One possible reason behind the frequent

occurrence of WA vulnerabilities could be the lack of

any useful overview regarding the effectiveness of

different security measures. There are various tools

available for the same purpose and it is difficult for

practitioners to understand what security measures

that are worth investing in for a particular WA. Data

on the general effectiveness of different approaches

would thus be valuable even if it come with a certain

degree of uncertainty.

There are a few studies that have attempted to

analyze the effectiveness of different

countermeasures against WA attacks in laboratory

environments [4–6]. Unfortunately, the difficulties of

performing experiments on the topic in a

representative manner have brought various

constraints that delimit the value of their results for a

decision maker in the industry. These constraints

include, for example, that the effectiveness of

countermeasures in combination is not investigated

or that the type attacker which the data is valid for is

not detailed. As a consequence, their results cannot

be generalized to the domain at large or compared to

studies by others.

Expert judgment is often used when quantitative

data is difficult to obtain from experiments or studies

of archival data. This study provides estimates by 21

WA security experts on the effort that is required to

find an input validation vulnerability in WAs

developed in 16 different ways. Since different

experts can have different accuracy, Cooke’s

classical method [7], the best-practice method for

weighting expert judgment, was employed to select

the set of experts that perform best at estimates of

this type.

mailto:hannesh@ics.kth.se
mailto:emailaddress@xxx.xxx
mailto:teodor.sommestad@foi.se

The rest of the paper unfolds as follows. Section 2

describes the studied variables and the utilized

assumptions. Section 3 describes Cooke’s classical

method. Section 4 describes the data collection

method used during the study. Section 5 presents the

observed results and Section 6 discusses these results.

Finally, Section 7 concludes the paper.

2. Model and assumptions

Numerous variables can be assumed to influence

the effort required to find vulnerabilities in WAs.

Technical measures, process measures and

organizational measures are all of relevance [8]. This

study uses variables identified through a previous

research [9] involving a literature review and expert

judgment. This previous study is summarized in this

section - the reader is referred to [9] for more

comprehensive details.

2.1. Studied variables

The literature review identified four categories of

variables of importance towards the effectiveness of

countermeasures for WA vulnerabilities: (i) the type

of attack (e.g., XSS or SQLi), (ii) whether the

vulnerability is known to the public at large or not,

(iii) the severity of the vulnerability (e.g., if

successful exploitation can provide administrator-

level privileges), and (iv) what type of security

mechanism that is in question. According to the

literature there are dependencies between all of these

variables.

The hypothesized variables from the literature

review were revised according to the archival data

and judgment of six domain experts. The purpose of

these revisions were threefold: (i) to revise the

theoretical categorization and obtain variables on an

abstraction level that is useful when the effectiveness

of countermeasures used in practice is estimated, (ii)

to determine what variable-dependencies that are

important to study, and (iii) to obtain rough estimates

on the general effectiveness of different defenses

against WA attacks (both alone and in combination).

The expert judgment study resulted in several

significant revisions of the hypothesized

categorization, perhaps the most significant being the

addition of a new category – the competence of the

attacker in question. In addition, the type of

vulnerability (e.g., XSS or SQLi), and the severity of

a vulnerability, were not seen as significant towards

the effectiveness of countermeasures. For example,

the experts’ believed that black box testing tools were

equally effective for XSS and SQLi vulnerabilities,

regardless of the vulnerability’s severity. As a

consequence, variables related to these two categories

were discarded based on the reviewers’

recommendations.

An important distinction was made between

countermeasures that focus on finding, patching and

removing vulnerabilities in the WA and

countermeasures that are applied to secure an already

deployed WA and do not require major changes of

application source code (e.g., a WA firewall). This

paper focuses on estimating the effectiveness of the

first type of countermeasures, i.e., countermeasures

that typically are employed during development. Four

such countermeasures were identified during the pre-

study: (i) black box testing, (ii) type-safe API’s, (iii)

static code analysis and (iv) the developers’ WA

security training.

Type-safe API’s [10] involves using a

development environment that is built to function in a

secure and reliable fashion. In essence, a type-safe

API defines a rule set for allowed code and how

different parts of an application are allowed to

exchange information. For instance, how a PHP

application is allowed to communicate with an SQL

database. If a developer writes code that does not

comply with the rule set defined within the type-safe

API an error is produced, notifying the developer of

the proper syntax as defined by the API.

Developer security training [11] involves

increasing the WA security awareness of the software

developers. The aim is to make developers recognize

what improper input and output sanitizing can result

in and how such issues can be mitigated.

Black box testing [12] involves running

automated scanners or fuzzers on deployed WAs

without viewing server-side source code. The aim of

a black box tests is to find vulnerabilities so that

these can be removed before deployment.

Static code analysis [10], [12] involves white

box testing for detecting vulnerabilities. They analyze

the WA’s source code and try to find vulnerabilities

that would be exploitable in runtime by applying

various checks.

Binary ranges were used for analyzing the

effectiveness these four countermeasures. That is, a

countermeasure is either employed or not employed

during development of the WA. This gave a total of

16 different types of vulnerability discovery projects

for which to produce effort estimates.

2.2. Assumptions

A number of assumptions are used for the effort

estimates produced in this study. First, the

competence of the attacker is expected to have a

substantial impact on the effort required [13]. To

eliminate variations caused by this variable it is

assumed that the person who carries out the

vulnerability discovery project is a professional

penetration tester. Second, it is assumed that probing

for the vulnerability is performed from an external

network (e.g., the internet). Third, an input validation

vulnerability refers to either SQLi, XSS, Command

Injection or CSRF. This delimitation was made to

focus only on vulnerability discovery in the actual

WA and thus exclude, for example, buffer overflow

vulnerabilities in the web server binary (a topic we

have previously studied [14]). The final assumption

is that all unspecified variables (e.g., the size of the

WA’s source code) have the value they typically

have in an enterprise environment. The respondents

were asked to consider the variation between

enterprises and how this influenced the uncertainty of

their estimates. Thus, any remaining uncertainty

should be accounted for in the estimates.

3. Synthesizing expert judgment

There is much research on how to combine, or

synthesize, the judgment of multiple experts to

increase the calibration of the estimate used.

Research has shown that a group of individuals

assess an uncertain quantity better than the average

expert, but the best individuals in the group are often

better calibrated than the group as a whole [15]. The

combination scheme used in this research is the

classical model of Cooke [7]. Cooke’s classical

method attempts to identify the best set of experts

and experience show that it outperforms both the best

expert and the “equal weight” combination of

experts’ estimates. In an evaluation involving 45

studies it performs significantly better than both in 27

studies and performs equally as well as the best

expert in 15 of them [16].

In Cooke’s classical method calibration and

information scores are calculated for the experts

based on their answers on a set of seed questions, i.e.,

questions for which the true answer is known at the

time of analysis. The calibration score shows how

often the respondent’s estimated intervals cover the

true value; the information score show how precise

the respondent’s answers are. These two scores are

used to define a decision maker which assigns

weights to the experts based on their performance.

The weights defined by this decision maker are used

to weight the respondents’ answers’ to the questions

of interest – in this case the effort estimates for

vulnerability discovery projects. In sections 3.1, 3.2

and in 3.3 Cooke’s classical method is explained. The

reader is referred to [7] for a more detailed

explanation.

3.1. Calibration score

In the elicitation phase the experts provide

individual answers to the seed questions. The seed

questions request the respondents to specify a

probability distribution for an uncertain continuous

variable. This distribution is typically specified by

stating its 5
th

, 50
th

, and 95
th

 percentile values. These

percentiles yield four intervals over the percentiles

[0-5, 5-50, 50-95, 95-100] with probabilities of p=

[0.05, 0.45, 0.45, 0.05]. As the seeds are realizations

of these uncertain variables the well calibrated expert

will have approximately 5% of the realizations in the

first interval, 45 % of the realizations in the second

interval, 45 % of the realizations in the third interval

and 5% of the realizations in the fourth interval. If s

is the distribution of the seeds over the intervals the

relative information of s with respect to p is:

 () ∑ ()

 . This value indicates how

surprised someone would be if one believed that the

distribution was p and then learnt that it was s.

If N is the number of samples (seeds) the statistic

of 2NI(s, p) is asymptotically Chi-square distribution

with three degrees of freedom. This is asymptotic

behavior is used to calculate the calibration Cal of

expert e as: ()
 (()). The

calibration measures the statistical likelihood of a

hypothesis. The hypothesis tested is that realizations

of the seeds (s) are sampled independently from a

distribution agreeing with the expert's assessments

(p).

3.2. Information score

The second score used to weight an expert is the

information score, i.e., how informative the expert’s

estimated intervals are. This score is calculated as the

deviation of the expert's distribution to some

meaningful background measure. In this study the

background measure is a uniform distribution over

[0,1].

If bi is the background density for seed i∈{1,…,N}

and de,i is the density of expert e on seed i the

information score for expert e is calculated as:

 ()

∑ ()

 , i.e., as the relative

information of the expert’s distribution with respect

to the background measure . It should be noted that

the information score does not reflect calibration and

does not depend on the realization of the seed

questions. Thus, a respondent will receive a high

information score if its estimates are substantially

different from the background distributions even if

the estimate is completely wrong.

3.3. Constructing a decision maker

The classical method rewards experts who

produce answers with high calibration (high

statistical likelihood) and high information value

(low entropy). A strictly proper scoring rule is used

to calculate the weights the decision maker should

use. If the calibration score of the expert e is equal or

greater than the threshold value α the expert’s weight

is obtained as w(e)=Cal(e)*Inf(e). If the expert’s

calibration is less than α the expert’s weight is set to

zero, a situation which is common to happen to a

substantial number of experts in practical

applications.

The threshold value α corresponds to the

significance level for rejection of the hypothesis that

the expert is well calibrated. The value of α is

identified by resolving the value that would optimize

a virtual decision maker. This virtual decision maker

combines the experts’ answers (probability

distributions) based on the weights they obtain at the

chosen threshold value (α). The optimal level for α is

where this virtual expert would receive the highest

possible weight if it was added to the expert pool and

had its calibration and information scored as the

actual experts.

When α has been resolved the normalized value

of the experts weights w(e) are used to combine their

estimates of the uncertain quantities of interest.

4. Data collection method

This section presents how the data was collected

in terms of how seed questions for Cooke’s classical

method were constructed, how the population and

sample of experts that was chosen and how the

elicitation instrument was developed and tested.

4.1. Seed questions

Since the experts’ answers to the seed questions

are used to weight them it is critical that the seeds are

well validate. They need to be drawn from the

respondents’ domain of expertise, but need not

necessarily be directly related to questions of the

study [7].

Naturally, the robustness of the weights attributed

to individual experts depends on the number of seeds

used. This study used 8 seed questions. Experience

shows this is enough to see substantial difference in

calibration between experts [7].

In this study two types of seed questions were

used (cf. Table 1): distributions of vulnerabilities

according to typecasting (question 1-4) [3] and

complexity (question 5-8) [17]. Typecasting involves

what type of input variable that is vulnerable: either a

Boolean, Free text (an arbitrary string), or Structured

text (e.g., an URL or email). A more open ended

typecast is often believed to be more difficult to

sanitize than a more restricted one. Complexity

involves whether the attack string is encoded or not.

For example, a variable vulnerable to SQLi through a

simple non-encoded single quote (i.e., ’) is likely

easier to spot than one that only is vulnerable to a

specific encoded single quote (e.g., '). These

two types of questions are related to the respondents’

domain of expertise as they gauge how well the

expert can assess properties related to vulnerabilities

that can be expected to be found. The realizations for

question 5-8 were obtained from the authors of [17]

directly.

Table 1. Seed questions and their realized
values.

Seed Value Ref

1

Number of Boolean variables out

of 100 variables vulnerable to

SQLi.

4% [3]

2

Number of Structured variables out

of 100 Structured- or Free text

variables vulnerable to SQLi.

77% [3]

3
Number of Boolean variables out

of 100 variables vulnerable to XSS.
4% [3]

4

Number of Structured variables out

of 100 Structured- or Free text

variables vulnerable to XSS.

67% [3]

5

Number of complex SQLi

vulnerabilities out of 100 published

during 2005.

7% [17]

6

Number of complex SQLi

vulnerabilities out of 100 published

during 2009.

14% [17]

7

Number of complex XSS

vulnerabilities out of 100 published

during 2005.

27% [17]

8

Number of complex XSS

vulnerabilities out of 100 published

during 2009.

23% [17]

4.2. The domain experts

As this research aims to identify quantities related

to discovery effort the respondents needed both the

ability to evaluate aspects in the domain and the

ability to reason in terms of probabilities. In terms of

the expert categories described in [18] individuals

that are expert judges are desirable. Good candidates

for this are researchers and practitioners in the WA

security field, such as professional WA penetration

testers (the studied type of attacker). These can be

expected to possess the required skills to evaluate the

difficulty of finding vulnerabilities given different

scenarios, and were thus chosen as the population of

the study. There are multiple ways to reach out to

respondents that are a part of this population. For

example, they can be identified through authorship of

publications, forums or email lists. This study

involves invitations through large and relevant email

lists (six public and one private) since this is a very

simple way of reaching out to a very large sample of

respondents.

The public lists include pen-

test@securityfocus.com, security-

basics@securityfocus.com, gpwn-list@lists.sans.org,

owasp-dotnet@lists.owasp.org, owasp-

testing@lists.owasp.org and owasp-

sweden@lists.owasp.org. The private list is an

international invitation-only list involving a sample

of highly experienced security professionals (e.g.,

software penetration testers).

The potential issue of novices participating is

handled by Cooke’s classical method as this method

scores respondents based on their performance on a

set of test questions (the seeds). As recommended by

[19], motivators were presented to the survey

participants: (i) helping the WA security community

as whole, (ii) the possibility to win a gift certificate

on Amazon, and (iii) being able to compare their

answers to other experts’ answers after the survey

was completed.

The survey was online between the 29
th

 of

February 2012 and the 22
nd

 of March 2012. A total of

263 respondents opened it; of these, 52 fully

answered the seeds, and 21 of these 52 respondents

completed the entire survey. A completion rate of this

magnitude can be expected of a more advanced

survey such as the one utilized.

4.3. Elicitation instrument

A web survey was used to collect the probability

distributions from the invited respondents. The

survey was structured into four parts, each beginning

with a short introduction to the section.

First, the respondents were given an introduction

to the survey that explained its purpose and outline.

In this introduction they also provided information

about themselves, e.g., years of experience in the

field of research.

Second, the respondents received training

regarding the answering format used in the survey.

After confirming that this format was understood the

respondents proceeded to its third part. In the third

part both the seed questions and the questions

regarding the studied variables were presented to the

respondents. Each question was described through a

scenario comprising its conditions. Scenarios and

conditions for the seed questions can be found in

Table 1; project types and conditions for the

questions of interest in this study are described in

Section 2. For these questions the respondents were

asked to provide probability distributions that

expressed their beliefs. As is customary in

applications of Cooke’s classical method each

probability distribution was specified by setting the

5
th

 percentile, the 50
th

 percentile (the median), and

the 95
th

 percentile. In the survey the respondents

specified their distribution by adjusting sliders or

entering values to draw a dynamically updated graph

over their probability distribution. The three points

specified by the respondents defines four intervals

over the range [0, 100] percent. The graphs displayed

the probability density as a histogram, instantly

updated upon change of the input values.

For the questions of interest, the respondents were

asked to specify the number of hours required to

discover an input validation vulnerability with a

likelihood of 5 percent, 50 percent, and 95 percent

(resulting in a probability density function). This is a

common format to use for effort estimates [20] and in

prediction in general [21]. As for the seeds the

estimates on these questions dynamically updated

graphs representing their answers. However, for these

questions this graph showed the cumulative

probability of finding a vulnerability as a function of

hours spent.

Use of graphical formats is known to improve the

accuracy of elicitation [22]. In this survey, figures

and colors were used to complement the textual

formulations and make the content easier to

understand. In Figure 1 the format presented to

respondents is exemplified.

In the fourth and final part of the survey the

respondents were asked to detail any tested variable

(cf. Section 2.1) that they would like to replace with

another (more important) variable. This section also

asked the respondents to describe how they pictured

these variables. For example, if they depicted a

specific static code analysis tool or a specific type-

safe API (and if so, to detail this countermeasure). At

the end of this section the respondents were finally

asked to detail any perceived issues with the survey.

Elicitation of probability distributions is

associated with a number of issues [22]. Effort was

therefore spent on ensuring that the measurement

instrument held sufficient quality. After careful

construction the survey was qualitatively reviewed

during personal sessions with an external respondent

Figure 1. Question and answering format used in the survey (for project 2).

representative of the population. This session

contained two parts. First the respondent was given

the task to fill in the survey without any help from the

researchers. After this discussions followed regarding

the instrument quality. These sessions resulted in

several improvements. For example, a graphical

figure describing one of the vulnerability discovery

projects was revised.

Before this qualitative review the question format

as such had been tested in a pilot study on other

security parameters. In that pilot study a randomized

sample of 500 respondents was invited. Of these 34

completed the pilot during the week it was open. A

reliability test using Cronbach’s alpha [23], [24] was

carried out using four different ways to phrase

questions for one variable. Results from this test

showed α = 0.817, which indicates good internal

consistency of the instrument.

5. Results

This chapter presents the analysis performed on

the judgment of the 21 respondents. Section 5.1

describes the respondents, Section 5.2 their

performance on the seed questions and Section 5.3

the synthesized effort estimates produced using

Cooke’s method. Finally, Section 5.4 analyzes the

effectiveness of the studied countermeasures.

5.1. Overall characteristics of respondents

The 21 participating respondents are associated

with 9 countries. A majority (8) of the respondents

were participating from the United States (all from

different states) but a number of other countries were

also observed [e.g., India (4 respondents), Colombia

(3) and Sweden (1)]. The mean experience related to

WA vulnerabilities was 6.9 years and the mean

perceived competence 57% (from 1-100%, where 1%

meant that the respondent perceived itself to be more

knowledgeable on the topic than 99% of the

community). The respondents generally positioned

themselves towards practice rather than research (a

mean of 37 on a scale from 1: only work with

industry/practice to 100: only work with

research/academia).

5.2. Performance on the seed questions

As in many other studies involving expert

judgment some of the respondents were poorly

calibrated. Their calibration score varied between

2.2×10
-10

 and 0.177 with a mean of 0.015. The

respondents’ information score varied between 0.577

and 3.99 with a mean of 1.82. Figure 2 shows the

information score and calibration score of the 21

respondents.

Cooke’s classical method aims to identify those

respondents whose judgment is well calibrated and

informative. The virtual decision maker was

optimized at a calibration score of 0.0265.

Consequently, the four rightmost respondents in

Figure 2 received a weight higher than zero and the

other 17 respondents received a weight of zero. As

noted in Section 3.3 it is not uncommon that a

substantial number of respondents receive the weight

zero with this method. The four respondents that

were sufficiently calibrated received the weights

0.4645, 0.2314, 0.2016 and 0.1025 after

normalization.

Figure 2. Information and calibration

scores of the respondents.

 The four respondents with highest calibration

scores came from different countries, had a mean of

5.3 years experience, a mean perceived competence

of 56% and positioned themselves towards practice

rather than academia (a mean of 24).

5.3. Work effort in the project types

The respondents specified the effort (in hours)

required to find a vulnerability with 5% certainty,

50% certainty and 95% certainty. As depicted in

Table 2 the synthesized estimates show clear

differences among the project types.

The median for the projects varies between 3 and

33 hours; the value at the 5
th

 percentile varies

between 1 and 17 hours; the value at the 95
th

percentile varies between 7 and 53 hours. For

example, in vulnerability discovery project number

four the WA was developed using a type-safe API,

by developers that had undergone security training,

but without the aid of black box testing tools or static

code analyzers. In this project the expected number

of hours to find a vulnerability is between 4 (5%

certainty) and 15 hours (95% certainty), with a

median (50% certainty) of 8 hours.

5.4. Effectiveness of countermeasures

As all combinations between the four tested

countermeasures are studied it is possible to analyze

their significance, both for when that they are

employed alone and when they are employed in

combination with others’. Significance is calculated

as the mean difference in effort between when a

countermeasure (or a combination of measures) is

Table 2. Different types of vulnerability
discovery projects and the estimated hours

to find a vulnerability with a certain degree of
certainty.

P
ro

je
c
t

T
y

p
e-

sa
fe

 A
P

I

S
ec

u
ri

ty

tr
a

in
in

g

B
la

ck
 b

o
x

 T
es

ti
n

g

S
ta

ti
c

co
d

e

a
n

a
ly

si
s

L
o

w
 (

5
%

)

M
ed

iu
m

 (
5

0
%

)

H
ig

h
 (

9
5

%
)

1 Yes Yes Yes Yes 10 33 53

2 Yes Yes Yes No 17 29 46

3 Yes Yes No Yes 15 25 42

4 Yes Yes No No 4 8 15

5 Yes No Yes Yes 5 11 18

6 Yes No Yes No 5 11 17

7 Yes No No Yes 6 12 17

8 Yes No No No 5 9 12

9 No Yes Yes Yes 17 31 51

10 No Yes Yes No 12 20 32

11 No Yes No Yes 10 18 33

12 No Yes No No 1 3 8

13 No No Yes Yes 3 8 18

14 No No Yes No 1 7 12

15 No No No Yes 2 8 12

16 No No No No 2 5 7

Table 3. Effectiveness of countermeasures,
both alone and in combination.

Countermeasure

Increased effort (hours)

Low

(5%)

Medium

(50%)

High

(95%)

Type-safe API (A) 2.7 4.7 7.4

Security training (B) 7.0 12.0 22.3

Black box testing (C) 3.3 7.9 11.2

Static code analysis (D) 2.7 6.7 13.5

AB -0.8 0.8 0.7

AC -1.2 -0.2 0.6

AD -1.1 -0.5 -3

BC 3.4 6.8 9.8

BD 2.0 5.0 6.2

CD -2.7 -2.7 -2.0

ABC -1.2 0.1 -0.6

ABD -1.1 -0.5 0.7

ACD -2.3 -1.4 -3.9

BCD -3.0 -1.3 -4.3

ABCD -1.4 -1.1 0

0

1

2

3

4

5

0 0.05 0.1 0.15 0.2

In
fo

rm
a

ti
o

n
 s

co
re

Calibration score

employed compared to when the same combination

of countermeasures is not employed. This is a

customary calculation when studying a complete

experimental design (i.e., when all possible state-

space combinations have been tested) [25]. An

overview of the results from this analysis can be seen

in Table 3. For example, if a type-safe API is

employed during development then the median

additional effort required to find a vulnerability by a

professional penetration tester is 4.7 hours.

The combined effects should be interpreted as

follows: The effectiveness of countermeasures in

combination is a sum of their effectiveness alone and

their effectiveness in combination with others’. For

example, black box testing (C) and static code

analysis (D) provide an increased median effort of

7.9 hours and 6.7 hours if employed alone, and -2.7

hours if employed in combination; giving a total of

7.9 + 6.7 - 2.7 = 17.3 hours to find a vulnerability

with 50% certainty. Thus, these tools are not

perceived to “shine” together – but a combination of

them still yields a more secure result than when only

employing one of them.

6. Discussion

This chapter is divided into three sections. The

first two sections discuss the most significant

countermeasures alone and in combination with

others’. The third section discusses the reliability and

validity of the study.

6.1. Individual countermeasures

The most important countermeasure is believed to

be developer security training. If the developers have

undergone regular WA security training it is expected

that the median time required to probe for an input

validation vulnerability by a professional penetration

tester will increase by 12 hours.

The second most important countermeasure is

automated black box testing. Employment of this

type of tool is expected to increase the effort with a

median of 7.9 hours. A close runner up to the

effectiveness of this countermeasure is static code

analyzers: this type of tool is expected to increase the

effort with a median of 6.7 hours.

The least effective tool is rather surprisingly

believed to be type-safe API’s. This type of

countermeasure is expected to increase the effort with

a median of 4.7 hours. A reason for this could be that

they typically only help sanitize a subset of all input

validation problems. For example, an API might

cover SQLi but not XSS, only cover subset of all

possible encodings for single quotes, or only cover a

subset of all possible variable types.

6.2. Countermeasures in combination

Developer security training is believed to increase

the effectiveness when employing black box testing

tools or source code analyzers. The median effort is

increased with 6.8 hours for black box testing (data

for BC) and 5 hours for static code analyzers (data

for BD). This is an expected result – developers that

have received training should be more efficient with

these tools.

Three strong negative joint effects are also

present, all involving the combination of employing

black box testing and static code analysis in

combination. The joint effect of these two

countermeasures (data for CD) is believed to

decrease the effort for finding a vulnerability with a

median of 2.7 hours. If the developers also have been

security trained (data for BCD) the effect is slightly

smaller but still negative (a median decreased effort

of 1.3 hours). Replacing developer training for a

type-safe API (data for ACD) is believed to have a

similar effect on the median effort (1.4 hours). One

reason behind these negative effects could be

information overload: the results from black box

testing and static code analysis are of similar type

(e.g., listing unsanitized input variables) and their

output (existing vulnerabilities) will sometimes

overlap. Furthermore, more tools could mean more

data to manually process and thus more difficulty

when prioritizing different mitigation suggestions.

A final important remark is that none of the joint

effects are larger than any of the lone effects.

Consequently, adding one of the four

countermeasures will increase the effort required to

find an input validation vulnerability regardless of

other countermeasures in place, but the size of this

increase will differ.

6.3. Validity and reliability

There are two major topics in terms of validity

and reliability that should be addressed: (i) whether

the respondents estimates are representative for WAs

at large, and (ii) whether the utilized data collection

tool and methodology provides reliable results.

Regarding (i), it is difficult to estimate if the

relatively small sample of respondents size can be

said to be representative of the WAs in enterprises at

large. On the other hand, the respondents were all

experienced, originated from different geographical

locations and had different backgrounds. This

suggests that the results reflect a wide variety of

conditions and that is not biased towards any

particular cultural attributes or properties by a certain

mindset (e.g., penetration testers that specialize in

evaluating .NET applications). Furthermore, it is

important to recognize that it is the first study made

on the topic. Thus, even tentative results are valuable.

Regarding (ii), the choice of variables and their

assumptions was made based on a pre-study

involving both literature review and domain experts

[9]. Concerning data collection methodology, Cooke

[7] suggests that seven guidelines should be followed

when data is elicited from experts. How these have

been addressed in the present study is described

below.

Cooke states that questions must be clear and

unambiguous and that a dry run should be carried out

before the actual study. In this study the clarity of

questions were tested in qualitative reviews with a

strategically selected respondent representative of the

population. The comments received from this person

helped improve the understandability of the

instrument and remove ambiguity. Also, a

quantitative test was performed on a survey with a

similar structure and a similar way of phrasing

questions. This quantitative test was made through a

pilot survey answered by 34 respondents. It indicated

good reliability of the survey instrument.

It is also suggested that an attractive graphical

format and a brief explanation of the elicitation

format should be prepared [7]. The answering format

used in this study was supported by graphical

illustrations – the answers were entered by entering a

probability function on the screen. This format was

also carefully explained in an introductory training

section in the survey. Also, background information

introduced each new section.

Cooke further recommends that the elicitation

should not exceed one hour and that coaching should

be avoided. None of the respondents who completed

the survey spent more than one hour to do so and

efforts were made to ensure that the questions were

formulated in a neutral way.

The last recommendation given in Cooke is that

an analyst should be present when respondents

answer the questions. The respondents were given

contact information to the research group when

invited to the survey and they were encouraged to use

these any if questions arose. It is possible that

analysts’ physical absence from the elicitation

suppressed some potential questions from being

asked. In the survey the respondents were asked to

comment the clarity of the questions and the question

format used. Based on the comment received it

appears as if the questions and the assumptions were

understandable.

The respondents were also asked if they wanted to

revise or replace any of the tested variables. None of

the respondents suggested any revisions in this

regard. Furthermore, the respondents did not share a

single mindset regarding how they envisioned the

studied variables. For example, various static code

analyzers such as HP WebInspect and Fortify SCA

were pictured by them.

7. Conclusions and future work

For researchers, the observations gained during

this study denote that some combined effects are

more important to include when deciding upon a

certain research design. For example, if studying the

usefulness of black box testing tools or static code

analyzers there is a need to detail the expertise of the

individuals that employ these and attempt to mitigate

their discovered vulnerabilities. The observations

also show clear evidence of that a fundamentally

novel approach is required to fully secure a WA –

nothing that is currently available will be enough to

prevent a skilled attacker from finding security flaws.

For practitioners, the results show that all four

analyzed countermeasures are important to employ

when developing a WA. Furthermore, the results

provide quantitative estimations that can be used to

compare countermeasures; both alone, and in

combination. It could be that a median of 33 hours

required to find a vulnerability when all

countermeasures have been employed is seen as

inadequate security. However, the cost of having a

professional spend a whole week to find a single

vulnerability with 50% chance is surely out of scope

for many vulnerability discovery projects.

Furthermore, the perceived threat for most

organizations is not professional penetration testers,

but rather less competent attackers (e.g., script

kiddies). A professional who spends 33 hours on a

vulnerability discovery project is certainly more

effective than a beginner who spends 33 hours. Thus,

the results from this study need be seen in the light of

a more competent attacker profile. On the other hand,

for security sensitive sites such as online banks a

security professional with one week at hand to probe

for vulnerabilities might be a realistic threat.

Nonetheless, it would be interesting to redo the

study in the scope of a less experienced attacker.

It would also be interesting to study the

effectiveness of run-time countermeasures such as

WA firewalls. A number of such countermeasures

were identified during the pre-study [9], and we plan

to study them utilizing the same approach as is

presented in this paper.

Finally, it would be interesting to view the

observations from this study in the light of data

sources other than expert judgment. One such option

could be to compare archival vulnerability data to the

development processes of different products. Another

option could be cyber defense competitions (e.g. as in

[26]); to study the relative security of different

countermeasures in controlled environments. In the

future we aim to employ a mix of these methods to

reexamine the estimates provided by this paper.

8. References

[1] OWASP, “2010 OWASP Top 10,” 2010.

[2] B. Martin, M. Brown, A. Paller, D. Kirby, and S.

Christey, “2011 CWE/SANS Top 25 Most

Dangerous Software Errors,” 2011.

[3] T. Scholte, D. Balzarotti, W. Robertson, and E.

Kirda, “An Empirical Analysis of Input Validation

Mechanisms in Web Applications and

Languages,” in The 27th Symposium On Applied

Computing, 2012, pp. 202-209.

[4] N. Antunes and M. Vieira, “Benchmarking

Vulnerability Detection Tools for Web Services,”

in 2010 IEEE International Conference on Web

Services, 2010, pp. 203-210.

[5] J. Fonseca, M. Vieira, and H. Madeira, “Testing

and comparing web vulnerability scanning tools

for SQL injection and XSS attacks,” in 13th

Pacific Rim International Symposium on

Dependable Computing, 2007, pp. 365-372.

[6] I. A. Elia, J. Fonseca, and M. Vieira, “Comparing

SQL Injection Detection Tools Using Attack

Injection: An Experimental Study,” in 21st

International Symposium onSoftware Reliability

Engineering (ISSRE), 2010, pp. 289–298.

[7] R. M. Cooke, Experts in uncertainty: opinion and

subjective probability in science. Oxford

University Press, USA, 1991.

[8] B. De Win, R. Scandariato, K. Buyens, J.

Grégoire, and W. Joosen, “On the secure software

development process: CLASP, SDL and

Touchpoints compared,” Information and

Software Technology, vol. 51, no. 7, pp. 1152-

1171, Jul. 2009.

[9] H. Holm, M. Ekstedt, “A metamodel for web

application injection attacks and

countermeasures”, in TEAR 2012 and PRET 2012,

LNBIP 131, pp. 198–217, 2012.

[10] M. D. Mitropoulos, V. Karakoidas, P. Louridas,

and D. Spinellis, “Countering Code Injection

Attacks: A Unified Approach,” Information

Management & Computer Security, vol. 19, no. 3,

pp. 3–3, 2011.

[11] R. L. Jones and A. Rastogi, “Secure coding:

building security into the software development

life cycle,” Information Systems Security, vol. 13,

no. 5, pp. 29-39, 2004.

[12] Y. Shin and L. Williams, “Toward A Taxonomy

of Techniques to Detect Cross-site Scripting and

SQL Injection Vulnerabilities,” 2008.

[13] A. Ozment, “Improving vulnerability discovery

models,” in Proceedings of the 2007 ACM

workshop on Quality of protection, 2007, pp. 6–

11.

[14] T. Sommestad, H. Holm, M. Ekstedt, ” Effort

Estimates for Vulnerability Discovery Projects”,

in 45th Hawaii International Conference on

System Sciences, pp. 5564—5573, 2012.

[15] R. T. Clemen and R. L. Winkler, “Combining

probability distributions from experts in risk

analysis,” Risk Analysis, vol. 19, pp. 187-204,

1999.

[16] R. Cooke, “TU Delft expert judgment data base,”

Reliability Engineering & System Safety, vol. 93,

no. 5, pp. 657-674, May 2008.

[17] T. Scholte, D. Balzarotti, and E. Kirda, “Have

things changed now? An empirical study on input

validation vulnerabilities in web applications,”

Computers and Security, 2012.

[18] D. J. Weiss and J. Shanteau, “Empirical

assessment of expertise,” Human Factors: The

Journal of the Human Factors and Ergonomics

Society, vol. 45, no. 1, p. 104, 2003.

[19] S. T. Cavusgil and L. A. Elvey-Kirk, “Mail survey

response behavior: A conceptualization of

motivating factors and an empirical study,”

European Journal of Marketing, vol. 32, no.

11/12, pp. 1165-1192, 1998.

[20] H. Kerzner, Project management: a systems

approach to planning, scheduling, and

controlling. Wiley, 2009.

[21] J. Armstrong, Principles of forecasting: a

handbook for researchers and practitioners.

Springer, 2001.

[22] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan,

“Statistical methods for eliciting probability

distributions,” Journal of the American Statistical

Association, vol. 100, no. 470, pp. 680-701, 2005.

[23] L. J. Cronbach, “Coefficient alpha and the internal

structure of tests,” Psychometrika, vol. 16, no. 3,

pp. 297-334, 1951.

[24] L. J. Cronbach and R. J. Shavelson, “My Current

Thoughts on Coefficient Alpha and Successor

Procedures,” Educational and Psychological

Measurement, vol. 64, no. 3, pp. 391-418, Jun.

2004.

[25] D. C. Montgomery, Design and analysis of

experiments. John Wiley & Sons Inc, 2008.

[26] H. Holm, T. Sommestad, U. Franke, and M.

Ekstedt, “Success Rate of Remote Code Execution

Attacks-Expert Assessments and Observations,”

Journal of Universal Computer Science, vol. 18,

no. 6, p. 732--749, 2012.

