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Abstract 
Web application vulnerabilities are widely 

considered a serious concern. However, there are as 

of yet scarce data comparing the effectiveness of 

different security countermeasures or detailing the 

magnitude of the security issues associated with web 

applications. This paper studies the effort that is 

required by a professional penetration tester to find 

an input validation vulnerability in an enterprise web 

application that has been developed in the presence 

or absence of four security measures: (i) developer 

web application security training, (ii) type-safe 

API’s, (iii) black box testing tools, or (iv) static code 

analyzers. The judgments of 21 experts are collected 

and combined using Cooke’s classical method. The 

results show that 53 hours is enough to find a 

vulnerability with a certainty of 95% even though all 

measures have been employed during development. If 

no measure is employed 7 hours is enough to find a 

vulnerability with 95% certainty.  
 

1. Introduction  

 
Web Applications (WA) are widely used and 

often hold sensitive or important data. Attacks 

against them can thus be very costly due to losses of 

data integrity, confidentiality or availability. The 

arguably most problematic type of WA security issue 

is code injection due to poor input sanitizing. This 

category of vulnerabilities includes, for example, 

SQL injection (SQLi), Command Injection and cross 

site scripting (XSS). Of these, SQLi is the most 

critical type of WA vulnerability according to 

OWASP [1] and SANS 2011 Top 25 (that rank all 

known IT security vulnerabilities) [2]. Command 

Injection and XSS are not far behind, being ranked 

second and fourth by SANS [2]. Naturally, other WA 

flaws such as Cross Site Request Forgery (CSRF) are 

also bothersome.   

In recent years, considerable effort has been 

performed to understand and manage this problem. 

For instance, organizations such as MITRE, SANS 

and OWASP have developed security awareness 

programs to help organizations to mitigate the issue. 

However, despite these efforts a recent study [3] 

shows that application developers still are unable to 

implement effective countermeasures for WA 

vulnerabilities. 

One possible reason behind the frequent 

occurrence of WA vulnerabilities could be the lack of 

any useful overview regarding the effectiveness of 

different security measures. There are various tools 

available for the same purpose and it is difficult for 

practitioners to understand what security measures 

that are worth investing in for a particular WA. Data 

on the general effectiveness of different approaches 

would thus be valuable even if it come with a certain 

degree of uncertainty.   

There are a few studies that have attempted to 

analyze the effectiveness of different 

countermeasures against WA attacks in laboratory 

environments [4–6]. Unfortunately, the difficulties of 

performing experiments on the topic in a 

representative manner have brought various 

constraints that delimit the value of their results for a 

decision maker in the industry. These constraints 

include, for example, that the effectiveness of 

countermeasures in combination is not investigated 

or that the type attacker which the data is valid for is 

not detailed. As a consequence, their results cannot 

be generalized to the domain at large or compared to 

studies by others.  

Expert judgment is often used when quantitative 

data is difficult to obtain from experiments or studies 

of archival data. This study provides estimates by 21 

WA security experts on the effort that is required to 

find an input validation vulnerability in WAs 

developed in 16 different ways. Since different 

experts can have different accuracy, Cooke’s 

classical method [7], the best-practice method for 

weighting expert judgment, was employed to select 

the set of experts that perform best at estimates of 

this type.  
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The rest of the paper unfolds as follows. Section 2 

describes the studied variables and the utilized 

assumptions. Section 3 describes Cooke’s classical 

method. Section 4 describes the data collection 

method used during the study. Section 5 presents the 

observed results and Section 6 discusses these results. 

Finally, Section 7 concludes the paper. 

 

2. Model and assumptions  

 
Numerous variables can be assumed to influence 

the effort required to find vulnerabilities in WAs. 

Technical measures, process measures and 

organizational measures are all of relevance [8]. This 

study uses variables identified through a previous 

research [9] involving a literature review and expert 

judgment. This previous study is summarized in this 

section - the reader is referred to [9] for more 

comprehensive details. 

 

2.1. Studied variables 

 
The literature review identified four categories of 

variables of importance towards the effectiveness of 

countermeasures for WA vulnerabilities: (i) the type 

of attack (e.g., XSS or SQLi), (ii) whether the 

vulnerability is known to the public at large or not, 

(iii) the severity of the vulnerability (e.g., if 

successful exploitation can provide administrator-

level privileges), and (iv) what type of security 

mechanism that is in question. According to the 

literature there are dependencies between all of these 

variables. 

The hypothesized variables from the literature 

review were revised according to the archival data 

and judgment of six domain experts. The purpose of 

these revisions were threefold: (i) to revise the 

theoretical categorization and obtain variables on an 

abstraction level that is useful when the effectiveness 

of countermeasures used in practice is estimated, (ii) 

to determine what variable-dependencies that are 

important to study, and (iii) to obtain rough estimates 

on the general effectiveness of different defenses 

against WA attacks (both alone and in combination). 

The expert judgment study resulted in several 

significant revisions of the hypothesized 

categorization, perhaps the most significant being the 

addition of a new category – the competence of the 

attacker in question. In addition, the type of 

vulnerability (e.g., XSS or SQLi), and the severity of 

a vulnerability, were not seen as significant towards 

the effectiveness of countermeasures. For example, 

the experts’ believed that black box testing tools were 

equally effective for XSS and SQLi vulnerabilities, 

regardless of the vulnerability’s severity. As a 

consequence, variables related to these two categories 

were discarded based on the reviewers’ 

recommendations.  

An important distinction was made between  

countermeasures that focus on finding, patching and 

removing vulnerabilities in the WA and 

countermeasures that are applied to secure an already 

deployed WA and do not require major changes of 

application source code (e.g., a WA firewall). This 

paper focuses on estimating the effectiveness of the 

first type of countermeasures, i.e., countermeasures 

that typically are employed during development. Four 

such countermeasures were identified during the pre-

study: (i) black box testing, (ii) type-safe API’s, (iii) 

static code analysis and (iv) the developers’ WA 

security training.  

Type-safe API’s [10] involves using a 

development environment that is built to function in a 

secure and reliable fashion. In essence, a type-safe 

API defines a rule set for allowed code and how 

different parts of an application are allowed to 

exchange information. For instance, how a PHP 

application is allowed to communicate with an SQL 

database. If a developer writes code that does not 

comply with the rule set defined within the type-safe 

API an error is produced, notifying the developer of 

the proper syntax as defined by the API.  

Developer security training [11] involves 

increasing the WA security awareness of the software 

developers. The aim is to make developers recognize 

what improper input and output sanitizing can result 

in and how such issues can be mitigated.  

Black box testing [12] involves running 

automated scanners or fuzzers on deployed WAs 

without viewing server-side source code. The aim of 

a black box tests is to find vulnerabilities so that 

these can be removed before deployment.  

Static code analysis [10], [12] involves white 

box testing for detecting vulnerabilities. They analyze 

the WA’s source code and try to find vulnerabilities 

that would be exploitable in runtime by applying 

various checks. 

Binary ranges were used for analyzing the 

effectiveness these four countermeasures. That is, a 

countermeasure is either employed or not employed 

during development of the WA. This gave a total of 

16 different types of vulnerability discovery projects 

for which to produce effort estimates. 

 

2.2. Assumptions 

 
A number of assumptions are used for the effort 

estimates produced in this study. First, the 

competence of the attacker is expected to have a 



substantial impact on the effort required [13]. To 

eliminate variations caused by this variable it is 

assumed that the person who carries out the 

vulnerability discovery project is a professional 

penetration tester. Second, it is assumed that probing 

for the vulnerability is performed from an external 

network (e.g., the internet). Third, an input validation 

vulnerability refers to either SQLi, XSS, Command 

Injection or CSRF. This delimitation was made to 

focus only on vulnerability discovery in the actual 

WA and thus exclude, for example, buffer overflow 

vulnerabilities in the web server binary (a topic we 

have previously studied [14]). The final assumption 

is that all unspecified variables (e.g., the size of the 

WA’s source code) have the value they typically 

have in an enterprise environment. The respondents 

were asked to consider the variation between 

enterprises and how this influenced the uncertainty of 

their estimates. Thus, any remaining uncertainty 

should be accounted for in the estimates.  

 

3. Synthesizing expert judgment 

 
There is much research on how to combine, or 

synthesize, the judgment of multiple experts to 

increase the calibration of the estimate used. 

Research has shown that a group of individuals 

assess an uncertain quantity better than the average 

expert, but the best individuals in the group are often 

better calibrated than the group as a whole [15]. The 

combination scheme used in this research is the 

classical model of Cooke [7]. Cooke’s classical 

method attempts to identify the best set of experts 

and experience show that it outperforms both the best 

expert and the “equal weight” combination of 

experts’ estimates. In an evaluation involving 45 

studies it performs significantly better than both in 27 

studies and performs equally as well as the best 

expert in 15 of them [16]. 

In Cooke’s classical method calibration and 

information scores are calculated for the experts 

based on their answers on a set of seed questions, i.e., 

questions for which the true answer is known at the 

time of analysis. The calibration score shows how 

often the respondent’s estimated intervals cover the 

true value; the information score show how precise 

the respondent’s answers are. These two scores are 

used to define a decision maker which assigns 

weights to the experts based on their performance. 

The weights defined by this decision maker are used 

to weight the respondents’ answers’ to the questions 

of interest – in this case the effort estimates for 

vulnerability discovery projects. In sections 3.1, 3.2 

and in 3.3 Cooke’s classical method is explained. The 

reader is referred to [7] for a more detailed 

explanation. 

 

3.1. Calibration score 

 
In the elicitation phase the experts provide 

individual answers to the seed questions. The seed 

questions request the respondents to specify a 

probability distribution for an uncertain continuous 

variable. This distribution is typically specified by 

stating its 5
th

, 50
th

, and 95
th

 percentile values. These 

percentiles yield four intervals over the percentiles 

[0-5, 5-50, 50-95, 95-100] with probabilities of p= 

[0.05, 0.45, 0.45, 0.05]. As the seeds are realizations 

of these uncertain variables the well calibrated expert 

will have approximately 5% of the realizations in the 

first interval, 45 % of the realizations in the second 

interval, 45 % of the realizations in the third interval 

and 5% of the realizations in the fourth interval.  If s 

is the distribution of the seeds over the intervals the 

relative information of s with respect to p is: 

 (   )  ∑   (     )
 
   . This value indicates how 

surprised someone would be if one believed that the 

distribution was p and then learnt that it was s.  

If N is the number of samples (seeds) the statistic 

of 2NI(s, p) is asymptotically Chi-square distribution 

with three degrees of freedom. This is asymptotic 

behavior is used to calculate the calibration Cal of 

expert e as:    ( )       
 (    (   )). The 

calibration measures the statistical likelihood of a 

hypothesis. The hypothesis tested is that realizations 

of the seeds (s) are sampled independently from a 

distribution agreeing with the expert's assessments 

(p). 

 

3.2. Information score 

 
The second score used to weight an expert is the 

information score, i.e., how informative the expert’s 

estimated intervals are. This score is calculated as the 

deviation of the expert's distribution to some 

meaningful background measure. In this study the 

background measure is a uniform distribution over 

[0,1]. 

If bi is the background density for seed i∈{1,…,N} 

and de,i is the density of expert e on seed i the 

information score for expert e is calculated as: 

   ( )  
 

 
∑  (       )
 
   , i.e., as the relative 

information of the expert’s distribution with respect 

to the background measure   . It should be noted that 

the information score does not reflect calibration and 

does not depend on the realization of the seed 

questions. Thus, a respondent will receive a high 

information score if its estimates are substantially 



different from the background distributions even if 

the estimate is completely wrong.  

 

3.3. Constructing a decision maker 

 
The classical method rewards experts who 

produce answers with high calibration (high 

statistical likelihood) and high information value 

(low entropy). A strictly proper scoring rule is used 

to calculate the weights the decision maker should 

use. If the calibration score of the expert e is equal or 

greater than the threshold value α the expert’s weight 

is obtained as w(e)=Cal(e)*Inf(e). If the expert’s 

calibration is less than α the expert’s weight is set to 

zero, a situation which is common to happen to a 

substantial number of experts in practical 

applications. 

The threshold value α corresponds to the 

significance level for rejection of the hypothesis that 

the expert is well calibrated. The value of α is 

identified by resolving the value that would optimize 

a virtual decision maker. This virtual decision maker 

combines the experts’ answers (probability 

distributions) based on the weights they obtain at the 

chosen threshold value (α). The optimal level for α is 

where this virtual expert would receive the highest 

possible weight if it was added to the expert pool and 

had its calibration and information scored as the 

actual experts. 

When α has been resolved the normalized value 

of the experts weights w(e) are used to combine their 

estimates of the uncertain quantities of interest. 

 

4. Data collection method 

 
This section presents how the data was collected 

in terms of how seed questions for Cooke’s classical 

method were constructed, how the population and 

sample of experts that was chosen and how the 

elicitation instrument was developed and tested. 

 

4.1. Seed questions 

 
Since the experts’ answers to the seed questions 

are used to weight them it is critical that the seeds are 

well validate. They need to be drawn from the 

respondents’ domain of expertise, but need not 

necessarily be directly related to questions of the 

study [7]. 

Naturally, the robustness of the weights attributed 

to individual experts depends on the number of seeds 

used. This study used 8 seed questions. Experience 

shows this is enough to see substantial difference in 

calibration between experts [7]. 

In this study two types of seed questions were 

used (cf. Table 1): distributions of vulnerabilities 

according to typecasting (question 1-4) [3] and 

complexity (question 5-8) [17]. Typecasting involves 

what type of input variable that is vulnerable: either a 

Boolean, Free text (an arbitrary string), or Structured 

text (e.g., an URL or email). A more open ended 

typecast is often believed to be more difficult to 

sanitize than a more restricted one. Complexity 

involves whether the attack string is encoded or not. 

For example, a variable vulnerable to SQLi through a 

simple non-encoded single quote (i.e., ’) is likely 

easier to spot than one that only is vulnerable to a 

specific encoded single quote (e.g., &#x27). These 

two types of questions are related to the respondents’ 

domain of expertise as they gauge how well the 

expert can assess properties related to vulnerabilities 

that can be expected to be found. The realizations for 

question 5-8 were obtained from the authors of [17] 

directly. 

 

Table 1. Seed questions and their realized 
values. 

# Seed Value Ref 

1 

Number of Boolean variables out 

of 100 variables vulnerable to 

SQLi. 

4% [3] 

2 

Number of Structured variables out 

of 100 Structured- or Free text 

variables vulnerable to SQLi. 

77% [3] 

3 
Number of Boolean variables out 

of 100 variables vulnerable to XSS. 
4% [3] 

4 

Number of Structured variables out 

of 100 Structured- or Free text 

variables vulnerable to XSS. 

67% [3] 

5 

Number of complex SQLi 

vulnerabilities out of 100 published 

during 2005.  

7% [17] 

6 

Number of complex SQLi 

vulnerabilities out of 100 published 

during 2009. 

14% [17] 

7 

Number of complex XSS 

vulnerabilities out of 100 published 

during 2005. 

27% [17] 

8 

Number of complex XSS 

vulnerabilities out of 100 published 

during 2009. 

23% [17] 

 

4.2. The domain experts 

 
As this research aims to identify quantities related 

to discovery effort the respondents needed both the 

ability to evaluate aspects in the domain and the 

ability to reason in terms of probabilities. In terms of 

the expert categories described in [18] individuals 

that are expert judges are desirable. Good candidates 

for this are researchers and practitioners in the WA 



security field, such as professional WA penetration 

testers (the studied type of attacker). These can be 

expected to possess the required skills to evaluate the 

difficulty of finding vulnerabilities given different 

scenarios, and were thus chosen as the population of 

the study. There are multiple ways to reach out to 

respondents that are a part of this population. For 

example, they can be identified through authorship of 

publications, forums or email lists. This study 

involves invitations through large and relevant email 

lists (six public and one private) since this is a very 

simple way of reaching out to a very large sample of 

respondents.  

The public lists include pen-

test@securityfocus.com, security-

basics@securityfocus.com, gpwn-list@lists.sans.org, 

owasp-dotnet@lists.owasp.org, owasp-

testing@lists.owasp.org and owasp-

sweden@lists.owasp.org. The private list is an 

international invitation-only list involving a sample 

of highly experienced security professionals (e.g., 

software penetration testers).  

The potential issue of novices participating is 

handled by Cooke’s classical method as this method 

scores respondents based on their performance on a 

set of test questions (the seeds). As recommended by 

[19], motivators were presented to the survey 

participants: (i) helping the WA security community 

as whole, (ii) the possibility to win a gift certificate 

on Amazon, and (iii) being able to compare their 

answers to other experts’ answers after the survey 

was completed.  

The survey was online between the 29
th

 of 

February 2012 and the 22
nd

 of March 2012. A total of 

263 respondents opened it; of these, 52 fully 

answered the seeds, and 21 of these 52 respondents 

completed the entire survey. A completion rate of this 

magnitude can be expected of a more advanced 

survey such as the one utilized. 

 

4.3. Elicitation instrument 

 
A web survey was used to collect the probability 

distributions from the invited respondents. The 

survey was structured into four parts, each beginning 

with a short introduction to the section.   

First, the respondents were given an introduction 

to the survey that explained its purpose and outline. 

In this introduction they also provided information 

about themselves, e.g., years of experience in the 

field of research.  

Second, the respondents received training 

regarding the answering format used in the survey. 

After confirming that this format was understood the 

respondents proceeded to its third part. In the third 

part both the seed questions and the questions 

regarding the studied variables were presented to the 

respondents. Each question was described through a 

scenario comprising its conditions. Scenarios and 

conditions for the seed questions can be found in 

Table 1; project types and conditions for the 

questions of interest in this study are described in 

Section 2. For these questions the respondents were 

asked to provide probability distributions that 

expressed their beliefs. As is customary in 

applications of Cooke’s classical method each 

probability distribution was specified by setting the 

5
th

 percentile, the 50
th

 percentile (the median), and 

the 95
th

 percentile. In the survey the respondents 

specified their distribution by adjusting sliders or 

entering values to draw a dynamically updated graph 

over their probability distribution. The three points 

specified by the respondents defines four intervals 

over the range [0, 100] percent. The graphs displayed 

the probability density as a histogram, instantly 

updated upon change of the input values.  

For the questions of interest, the respondents were 

asked to specify the number of hours required to 

discover an input validation vulnerability with a 

likelihood of 5 percent, 50 percent, and 95 percent 

(resulting in a probability density function). This is a 

common format to use for effort estimates [20] and in 

prediction in general [21]. As for the seeds the 

estimates on these questions dynamically updated 

graphs representing their answers. However, for these 

questions this graph showed the cumulative 

probability of finding a vulnerability as a function of 

hours spent.  

Use of graphical formats is known to improve the 

accuracy of elicitation [22]. In this survey, figures 

and colors were used to complement the textual 

formulations and make the content easier to 

understand. In Figure 1 the format presented to 

respondents is exemplified. 

In the fourth and final part of the survey the 

respondents were asked to detail any tested variable 

(cf. Section 2.1) that they would like to replace with 

another (more important) variable. This section also 

asked the respondents to describe how they pictured 

these variables. For example, if they depicted a 

specific static code analysis tool or a specific type-

safe API (and if so, to detail this countermeasure). At 

the end of this section the respondents were finally 

asked to detail any perceived issues with the survey. 

Elicitation of probability distributions is 

associated with a number of issues [22]. Effort was 

therefore spent on ensuring that the measurement 

instrument held sufficient quality. After careful 

construction the survey was qualitatively reviewed 

during personal sessions with an external respondent



 
Figure 1. Question and answering format used in the survey (for project 2). 

 

representative of the population. This session 

contained two parts. First the respondent was given 

the task to fill in the survey without any help from the 

researchers. After this discussions followed regarding 

the instrument quality. These sessions resulted in 

several improvements. For example, a graphical 

figure describing one of the vulnerability discovery 

projects was revised. 

Before this qualitative review the question format 

as such had been tested in a pilot study on other 

security parameters. In that pilot study a randomized 

sample of 500 respondents was invited. Of these 34 

completed the pilot during the week it was open. A 

reliability test using Cronbach’s alpha [23], [24] was 

carried out using four different ways to phrase 

questions for one variable. Results from this test 

showed α = 0.817, which indicates good internal 

consistency of the instrument. 

 

5. Results  

 
This chapter presents the analysis performed on 

the judgment of the 21 respondents. Section 5.1 

describes the respondents, Section 5.2 their 

performance on the seed questions and Section 5.3 

the synthesized effort estimates produced using 

Cooke’s method. Finally, Section 5.4 analyzes the 

effectiveness of the studied countermeasures.  

 

5.1. Overall characteristics of respondents 
 

The 21 participating respondents are associated 

with 9 countries. A majority (8) of the respondents 

were participating from the United States (all from 

different states) but a number of other countries were 

also observed [e.g., India (4 respondents), Colombia 

(3) and Sweden (1)]. The mean experience related to 

WA vulnerabilities was 6.9 years and the mean 

perceived competence 57% (from 1-100%, where 1% 

meant that the respondent perceived itself to be more 

knowledgeable on the topic than 99% of the 

community). The respondents generally positioned 

themselves towards practice rather than research (a 

mean of 37 on a scale from 1: only work with 

industry/practice to 100: only work with 

research/academia). 

 

5.2. Performance on the seed questions 

 
As in many other studies involving expert 

judgment some of the respondents were poorly 

calibrated. Their calibration score varied between 

2.2×10
-10

 and 0.177 with a mean of 0.015. The 

respondents’ information score varied between 0.577 

and 3.99 with a mean of 1.82. Figure 2 shows the 

information score and calibration score of the 21 

respondents.  

Cooke’s classical method aims to identify those 

respondents whose judgment is well calibrated and 

informative. The virtual decision maker was 

optimized at a calibration score of 0.0265. 

Consequently, the four rightmost respondents in 

Figure 2 received a weight higher than zero and the 

other 17 respondents received a weight of zero. As 

noted in Section 3.3 it is not uncommon that a 

substantial number of respondents receive the weight 



zero with this method. The four respondents that 

were sufficiently calibrated received the weights 

0.4645, 0.2314, 0.2016 and 0.1025 after 

normalization. 

 

 
Figure 2. Information and calibration 

scores of the respondents. 
 

 The four respondents with highest calibration 

scores came from different countries, had a mean of 

5.3 years experience, a mean perceived competence 

of 56% and positioned themselves towards practice 

rather than academia (a mean of 24). 

 

5.3. Work effort in the project types 

 
The respondents specified the effort (in hours) 

required to find a vulnerability with 5% certainty, 

50% certainty and 95% certainty. As depicted in 

Table 2 the synthesized estimates show clear 

differences among the project types.  

The median for the projects varies between 3 and 

33 hours; the value at the 5
th

 percentile varies 

between 1 and 17 hours; the value at the 95
th

 

percentile varies between 7 and 53 hours. For 

example, in vulnerability discovery project number 

four the WA was developed using a type-safe API, 

by developers that had undergone security training, 

but without the aid of black box testing tools or static 

code analyzers. In this project the expected number 

of hours to find a vulnerability is between 4 (5% 

certainty) and 15 hours (95% certainty), with a 

median (50% certainty) of 8 hours. 

 

5.4. Effectiveness of countermeasures 
 

As all combinations between the four tested 

countermeasures are studied it is possible to analyze 

their significance, both for when that they are 

employed alone and when they are employed in 

combination with others’. Significance is calculated 

as the mean difference in effort between when a 

countermeasure (or a combination of measures) is  

Table 2. Different types of vulnerability 
discovery projects and the estimated hours 

to find a vulnerability with a certain degree of 
certainty. 
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1 Yes Yes Yes Yes 10 33 53 

2 Yes Yes Yes No 17 29 46 

3 Yes Yes No Yes 15 25 42 

4 Yes Yes No No 4 8 15 

5 Yes No Yes Yes 5 11 18 

6 Yes No Yes No 5 11 17 

7 Yes No No Yes 6 12 17 

8 Yes No No No 5 9 12 

9 No Yes Yes Yes 17 31 51 

10 No Yes Yes No 12 20 32 

11 No Yes No Yes 10 18 33 

12 No Yes No No 1 3 8 

13 No No Yes Yes 3 8 18 

14 No No Yes No 1 7 12 

15 No No No Yes 2 8 12 

16 No No No No 2 5 7 

 

Table 3. Effectiveness of countermeasures, 
both alone and in combination. 

Countermeasure 

Increased effort (hours) 

Low 

(5%) 

Medium 

(50%) 

High 

(95%) 

Type-safe API (A) 2.7 4.7 7.4 

Security training (B) 7.0 12.0 22.3 

Black box testing (C) 3.3 7.9 11.2 

Static code analysis (D) 2.7 6.7 13.5 

AB -0.8 0.8 0.7 

AC -1.2 -0.2 0.6 

AD -1.1 -0.5 -3 

BC 3.4 6.8 9.8 

BD 2.0 5.0 6.2 

CD -2.7 -2.7 -2.0 

ABC -1.2 0.1 -0.6 

ABD -1.1 -0.5 0.7 

ACD -2.3 -1.4 -3.9 

BCD -3.0 -1.3 -4.3 

ABCD -1.4 -1.1 0 
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employed compared to when the same combination 

of countermeasures is not employed. This is a 

customary calculation when studying a complete 

experimental design (i.e., when all possible state-

space combinations have been tested) [25]. An 

overview of the results from this analysis can be seen 

in Table 3. For example, if a type-safe API is 

employed during development then the median 

additional effort required to find a vulnerability by a 

professional penetration tester is 4.7 hours.  

The combined effects should be interpreted as 

follows: The effectiveness of countermeasures in 

combination is a sum of their effectiveness alone and 

their effectiveness in combination with others’. For 

example, black box testing (C) and static code 

analysis (D) provide an increased median effort of 

7.9 hours and 6.7 hours if employed alone, and -2.7 

hours if employed in combination; giving a total of 

7.9 + 6.7 - 2.7 = 17.3 hours to find a vulnerability 

with 50% certainty. Thus, these tools are not 

perceived to “shine” together – but a combination of 

them still yields a more secure result than when only 

employing one of them. 

 

6. Discussion  

 
This chapter is divided into three sections. The 

first two sections discuss the most significant 

countermeasures alone and in combination with 

others’. The third section discusses the reliability and 

validity of the study.  

 

6.1. Individual countermeasures  

 
The most important countermeasure is believed to 

be developer security training. If the developers have 

undergone regular WA security training it is expected 

that the median time required to probe for an input 

validation vulnerability by a professional penetration 

tester will increase by 12 hours. 

The second most important countermeasure is 

automated black box testing. Employment of this 

type of tool is expected to increase the effort with a 

median of 7.9 hours. A close runner up to the 

effectiveness of this countermeasure is static code 

analyzers: this type of tool is expected to increase the 

effort with a median of 6.7 hours.  

The least effective tool is rather surprisingly 

believed to be type-safe API’s. This type of 

countermeasure is expected to increase the effort with 

a median of 4.7 hours. A reason for this could be that 

they typically only help sanitize a subset of all input 

validation problems. For example, an API might 

cover SQLi but not XSS, only cover subset of all 

possible encodings for single quotes, or only cover a 

subset of all possible variable types.  

 

6.2. Countermeasures in combination  
 

Developer security training is believed to increase 

the effectiveness when employing black box testing 

tools or source code analyzers. The median effort is 

increased with 6.8 hours for black box testing (data 

for BC) and 5 hours for static code analyzers (data 

for BD). This is an expected result – developers that 

have received training should be more efficient with 

these tools. 

Three strong negative joint effects are also 

present, all involving the combination of employing 

black box testing and static code analysis in 

combination. The joint effect of these two 

countermeasures (data for CD) is believed to 

decrease the effort for finding a vulnerability with a 

median of 2.7 hours. If the developers also have been 

security trained (data for BCD) the effect is slightly 

smaller but still negative (a median decreased effort 

of 1.3 hours). Replacing developer training for a 

type-safe API (data for ACD) is believed to have a 

similar effect on the median effort (1.4 hours). One 

reason behind these negative effects could be 

information overload: the results from black box 

testing and static code analysis are of similar type 

(e.g., listing unsanitized input variables) and their 

output (existing vulnerabilities) will sometimes 

overlap. Furthermore, more tools could mean more 

data to manually process and thus more difficulty 

when prioritizing different mitigation suggestions.  

A final important remark is that none of the joint 

effects are larger than any of the lone effects. 

Consequently, adding one of the four 

countermeasures will increase the effort required to 

find an input validation vulnerability regardless of 

other countermeasures in place, but the size of this 

increase will differ. 

 

6.3. Validity and reliability 

 
There are two major topics in terms of validity 

and reliability that should be addressed: (i) whether 

the respondents estimates are representative for WAs 

at large, and (ii) whether the utilized data collection 

tool and methodology provides reliable results.  

Regarding (i), it is difficult to estimate if the 

relatively small sample of respondents size can be 

said to be representative of the WAs in enterprises at 

large. On the other hand, the respondents were all 

experienced, originated from different geographical 

locations and had different backgrounds. This 

suggests that the results reflect a wide variety of 



conditions and that is not biased towards any 

particular cultural attributes or properties by a certain 

mindset (e.g., penetration testers that specialize in 

evaluating .NET applications). Furthermore, it is 

important to recognize that it is the first study made 

on the topic. Thus, even tentative results are valuable. 

Regarding (ii), the choice of variables and their 

assumptions was made based on a pre-study 

involving both literature review and domain experts 

[9].  Concerning data collection methodology, Cooke 

[7] suggests that seven guidelines should be followed 

when data is elicited from experts. How these have 

been addressed in the present study is described 

below. 

Cooke states that questions must be clear and 

unambiguous and that a dry run should be carried out 

before the actual study. In this study the clarity of 

questions were tested in qualitative reviews with a 

strategically selected respondent representative of the 

population. The comments received from this person 

helped improve the understandability of the 

instrument and remove ambiguity. Also, a 

quantitative test was performed on a survey with a 

similar structure and a similar way of phrasing 

questions. This quantitative test was made through a 

pilot survey answered by 34 respondents. It indicated 

good reliability of the survey instrument. 

It is also suggested that an attractive graphical 

format and a brief explanation of the elicitation 

format should be prepared [7]. The answering format 

used in this study was supported by graphical 

illustrations – the answers were entered by entering a 

probability function on the screen. This format was 

also carefully explained in an introductory training 

section in the survey. Also, background information 

introduced each new section. 

Cooke further recommends that the elicitation 

should not exceed one hour and that coaching should 

be avoided. None of the respondents who completed 

the survey spent more than one hour to do so and 

efforts were made to ensure that the questions were 

formulated in a neutral way. 

The last recommendation given in Cooke is that 

an analyst should be present when respondents 

answer the questions. The respondents were given 

contact information to the research group when 

invited to the survey and they were encouraged to use 

these any if questions arose. It is possible that 

analysts’ physical absence from the elicitation 

suppressed some potential questions from being 

asked. In the survey the respondents were asked to 

comment the clarity of the questions and the question 

format used. Based on the comment received it 

appears as if the questions and the assumptions were 

understandable.  

The respondents were also asked if they wanted to 

revise or replace any of the tested variables. None of 

the respondents suggested any revisions in this 

regard. Furthermore, the respondents did not share a 

single mindset regarding how they envisioned the 

studied variables. For example, various static code 

analyzers such as HP WebInspect and Fortify SCA 

were pictured by them. 

 

7. Conclusions and future work  

 
For researchers, the observations gained during 

this study denote that some combined effects are 

more important to include when deciding upon a 

certain research design. For example, if studying the 

usefulness of black box testing tools or static code 

analyzers there is a need to detail the expertise of the 

individuals that employ these and attempt to mitigate 

their discovered vulnerabilities. The observations 

also show clear evidence of that a fundamentally 

novel approach is required to fully secure a WA – 

nothing that is currently available will be enough to 

prevent a skilled attacker from finding security flaws. 

For practitioners, the results show that all four 

analyzed countermeasures are important to employ 

when developing a WA. Furthermore, the results 

provide quantitative estimations that can be used to 

compare countermeasures; both alone, and in 

combination. It could be that a median of 33 hours 

required to find a vulnerability when all 

countermeasures have been employed is seen as 

inadequate security. However, the cost of having a 

professional spend a whole week to find a single 

vulnerability with 50% chance is surely out of scope 

for many vulnerability discovery projects. 

Furthermore, the perceived threat for most 

organizations is not professional penetration testers, 

but rather less competent attackers (e.g., script 

kiddies). A professional who spends 33 hours on a 

vulnerability discovery project is certainly more 

effective than a beginner who spends 33 hours. Thus, 

the results from this study need be seen in the light of 

a more competent attacker profile. On the other hand, 

for security sensitive sites such as online banks a 

security professional with one week at hand to probe 

for vulnerabilities might be a realistic threat.  

Nonetheless, it would be interesting to redo the 

study in the scope of a less experienced attacker. 

It would also be interesting to study the 

effectiveness of run-time countermeasures such as 

WA firewalls. A number of such countermeasures 

were identified during the pre-study [9], and we plan 

to study them utilizing the same approach as is 

presented in this paper. 



Finally, it would be interesting to view the 

observations from this study in the light of data 

sources other than expert judgment. One such option 

could be to compare archival vulnerability data to the 

development processes of different products. Another 

option could be cyber defense competitions (e.g. as in 

[26]); to study the relative security of different 

countermeasures in controlled environments. In the 

future we aim to employ a mix of these methods to 

reexamine the estimates provided by this paper. 
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